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Marine biotoxins synthesized by Harmful Algal Blooms (HABs) represent one of the most important sources
of contamination in marine environments as well as a serious threat to fisheries and aquaculture-based in-
dustries in coastal areas. Among these biotoxins Okadaic Acid (OA) is of critical interest as it represents the
most predominant Diarrhetic Shellfish Poisoning biotoxin in the European coasts. Furthermore, OA is a
potent tumor promoter with aneugenic and clastogenic effects on the hereditary material, most notably
DNA breaks and alterations in DNA repair mechanisms. Therefore, a great effort has been devoted to the
biomonitoring of OA in the marine environment during the last two decades, mainly based on physicochem-
ical and physiological parameters using mussels as sentinel organisms. However, the molecular genotoxic
effects of this biotoxin make chromatin structure a good candidate for an alternative strategy for toxicity
assessment with faster and more sensitive evaluation. To date, the development of chromatin-based studies
to this purpose has been hampered by the complete lack of information on chromatin of invertebrate marine
organisms, especially in bivalve molluscs. Our preliminary results have revealed the presence of histone
variants involved in DNA repair and chromatin specialization in mussels and clams. In this work we use this
information to put forward a proposal focused on the development of chromatin-based tests for OA genotoxi-
city in the marine environment. The implementation of such tests in natural populations has the potential to
provide an important leap in the biomonitoring of this biotoxin. The outcome of such monitoring may have
critical implications for the evaluation of DNA damage in these marine organisms. They will provide as well
important tools for the optimization of their harvesting and for the elaboration of additional tests designed
to evaluate the safety of their consumption and potential implications for consumer's health.
SBs, Double Strand Breaks; DSP, Diarrhetic Shellfish Poiso
odifications.
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Fig. 1. OAhas critical genotoxic effects, including DNA strand breaks (Traore et al., 2001;
Valdiglesias et al., 2010), DNA damage and alterations in DNA repair (Traore et al., 2001;
Valdiglesias et al., 2010), 8-OH-deoxyguanine adducts (Fessard et al., 1996), apoptosis
(Valdiglesias et al., 2011c), alterations in the mitotic spindle (Van Dolah and Ramsdell,
1992), and micronuclei formation (Le Hegarat et al., 2003; Carvalho et al., 2006).
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1. Ecological relevance and genotoxic potential of marine biotoxins

One of the most important sources of contamination threatening
the marine environment is the presence of massive algal prolifera-
tions. Such blooms consist of large accumulations of algae includ-
ing phytoplankton, macroalgae and colorless heterotrophic protists.
Although human activities and the associated increase in nutrient
loadings are likely to be the primary reason in bloom formation
(Cardozo et al., 2007), natural events also convey a great relevance.
Oceanic/estuarine circulation as well as river flow influences the
abundance and distribution of plankton. Furthermore, the combina-
tion of physical (e.g., currents, upwelling, etc.) and chemical (e.g.,
salinity, nutrients, etc.) factors of these systems, coupled with the
different life cycles and behaviors of some taxa, contributes to the
formation of these blooms (Sellner et al., 2003; Hallegraeff, 2010).
Among the different types of massive algal proliferations, Harmful
Algal Blooms (HABs) represent the most serious threat to fisheries
and aquaculture-based industries in coastal areas. There are, how-
ever, toxin-producing species that cause significant impacts at low
population densities and do not discolor the water. Indeed, this is
the case of Dinophysis species, causing HAB at densities as low as
100 cells/L (Sellner et al., 2003). During these episodes, large amounts
of potentially harmful biotoxins are produced by phytoplankton spe-
cies, being subsequently accumulated by several marine organisms
(including fish, molluscs and crustaceans) and eventually entering
the human food chain. Thus, the bioaccumulation of these biotox-
ins represents a very serious health problem for human consumers
(Cardozo et al., 2007). Although a very small fraction of phytoplankton
species (roughly 1.5%) is able to produce biotoxins (Hallegraeff, 1995),
the economic losses, the resources affected, and the number of toxins
and toxic species involved have increased dramatically during the last
30 years (Van Dolah, 2000; Anderson, 2009).

Marine biotoxins can be grouped into 6 categories depending on
their effects on consumers and their chemical nature including: diar-
rhetic, neurotoxic, amnesic, paralytic, azaspiracid shellfish poisoning
and ciguatera fish poisoning (Rossini and Hess, 2010). Diarrhetic
Shellfish Poisoning (DSP) toxins are the most important across
European coasts (Aune and Yndestad, 1993), having already pro-
duced numerous toxic incidents (Villar-Gonzalez et al., 2007). The
main active principle responsible for DSP is Okadaic Acid (OA) and
the dinophysistoxins (DTX1, DTX2) (Vale, 2010), which are pro-
duced by dinoflagellates of the genera Dinophysis and Prorocentrum
(Yasumoto et al., 1980; Naves et al., 2006) and represent the most
predominant DSP biotoxin in Europe (James et al., 2010). Given
that the ingestion of as few as 36–40 μg of OA already induces alter-
ations in the gastrointestinal system causing nausea, vomiting, diar-
rhea and abdominal pain (Berven et al., 2001), specific normative
has been applied by the European Union to guarantee the safety of
consumers and public health (Regulation(EC), 2004), however small
quantities of OA may be present in molluscs that have passed legal
controls before its marketing, and therefore chronic exposure to
this toxin may exist in regular consumers.

1.1. Molecular routes to OA damage in the genome

OA has been identified as a potent tumor promoter and apopto-
sis inducer (Suganuma et al., 1988) encompassing critical aneugenic
and clastogenic genotoxic effects on the hereditary material (summa-
rized in Fig. 1) in a cell line- and concentration-dependent manner
(Valdiglesias et al., 2010; Valdiglesias et al., 2011a, 2011b). Further-
more, the small size and hydrophobic nature of this molecule
(compared with other biotoxins such as microcystins) facilitates the
diffusion of OA into different cell types and its interaction with cellular
components (Xing et al., 2008). At the molecular level, OA specifically
inhibits the Serine/Threonine Protein Phosphatases 1 (PP1) and 2A
(PP2A) in mammalian model systems (Bialojan and Takai, 1988),
interfering with the myriad of processes involving these enzymes.
For instance, several studies have demonstrated that OA causes cy-
toskeletal disruption, triggering apoptosis and membrane perme-
ability alterations, among other effects (Leira et al., 2001). Furthermore,
DNA oxidative damage has been also described in mammalian cell
lines exposed to this biotoxin (Xing et al., 2008), as well misregula-
tion of genes involved in critical cellular pathways (i.e., p53).

However, to completely understand the harmful effect of OA on
the hereditary material it is important to consider that DNA is asso-
ciated with proteins within the eukaryotic cell nucleus, forming a
complex known as chromatin (van Holde, 1988). The fundamental
packaging subunit of chromatin, the nucleosome core particle, con-
sists of approximately 146 bp of DNA wrapped around a protein
core composed by eight histone proteins, and is a highly dynamic
nucleoprotein complex (Zlatanova et al., 2009). Chromatin must
alter its conformation to counteract the multifaceted genotoxic
effects of OA, mediating the activation of a plethora of mechanisms
involved in the maintenance of genome integrity, most importantly
transcription, DNA replication, recombination and repair (Moggs
and Orphanides, 2004). This process (often called chromatin remo-
deling) requires the concerted action of histone-modifying enzymes,
ATP-dependent chromatin remodeling complexes as well as histone
variants with specialized functions (Ausió, 2006). The resulting
histone marks, in combination with the specialized domains imparted
by histone variants, dynamically modify the physical properties of
individual nucleosomes andhigher-order chromatin structures (Campos
and Reinberg, 2009) in what it has been referred to as the ‘histone
language’ based on a ‘histone code’ (Strahl and Allis, 2000).

1.2. Dynamic chromatin answers OA genotoxic effect within the cell
nucleus

Among the different genotoxic effects OA conveys on chromatin,
DNA Double Strand Breaks (DSBs) stand out as the most severe due
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to the disruptive effect they produce on both DNA strands, eventually
leading to the loss of genetic material (Altaf et al., 2007). Consequently,
quick repair is required in order to prevent further damage to the cell,
with mechanisms that involve the dynamic remodeling of chromatin
in the earliest response (Fig. 2A). The role played by the H2A.X histone
variant in response to DNA DSBs falls within this category. Accordingly,
H2A.X histones of extensive regions flanking a damaged site become
reversibly phosphorylated at their C-terminal SQEY motif (γ-H2A.X)
creating the so-called ‘H2A.X foci’, which constitutes the primary signal
activating the mechanism of DNA DSB repair within the cell nucleus
(Li et al., 2005; Dickey et al., 2009). Once the repair process has been
completed, the dissolution of the foci can occur following two differ-
ent pathways: the first option involves γ-H2A.X dephosphorylation
by phosphatases including PP1, PP2A, PP4, PP6, and Wip1 (Wild-
type p53-induced phosphatase 1) (Freeman and Monteiro, 2010).
The second option would lead to the release of γ-H2A.X of the
nucleosome by ATP-dependent remodeling factors with the par-
ticipation the histone variant H2A.Z (Altaf et al., 2007).

Although the phosphorylation and replacement of histone H2A.X
constitutes the most widely studied chromatin-based mechanism of
DNA repair, additional Post-Translational Modifications (PTMs) and
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et al., 2005) and H1 (Konishi et al., 2003; Kysela et al., 2005) has
been shown to participate in the repair process (Fig. 2A). Phosphor-
ylation, in combination with other PTMs such as acetylation (Bird
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signals for different protein complexes involved in DNA repair (Houben
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new dimension in the regulation of DNA damage response has been
recently ascribed to microRNAs (miRNAs), including a repressive
role of miRNA-138 on H2A.X expression (Hu and Gatti, 2011; Wang
et al., 2011).

2. Biomonitoring of harmful biotoxins in the marine environment

The contamination of coastal areas with OA resulting from HABs
has drastic negative effects for both the economy of aquaculture-
based industries and the health of human consumers exposed to
intoxication. Such a harmful effect is especially evident in the case of
bivalve molluscs harvested in estuarine areas, which are completely
exposed to OA given their sessile and filter-feeding life style (Cajaraville
et al., 2000; Franzellitti et al., 2010). More specifically, mollusc produc-
tion has been reduced 25% during the last 5 years as a consequence of
HABs in coastal areas from Galicia (NW Spain), where this industry
maintains 11,500 direct jobs and a net worth of 115 million euro/year
(FAO, 2011), representing one of the major driving force for the
economy of that region.

A very important effort has thus been dedicated to analyze the
effect of OA on marine organisms during the last two decades, espe-
cially through biomonitoring programs that use mussels as sentinel
model organisms (Wells et al., 2001). However, the reliance of such
analyses on physicochemical and physiological parameters often
results in an indiscriminating low sensitivity, especially for the moni-
toring of long-term exposure to trace levels of OA (Valdiglesias et al.,
2011a). Consequently, and given the molecular basis of the genotoxic
effect of OA, the development of molecular probes focusing on
the effects of this biotoxin at the level of chromatin, should pro-
vide a very appealing alternative in order to overcome this prob-
lem. Indeed, the power of chromatin-based genotoxicity tests has
been already demonstrated in mammals using H2A.X phosphoryla-
tion as biomarker for DNA repair following exposure of cells to
suspected DNA-damaging compounds such as cigarette smoke, polycy-
clic aromatic compounds, and crude oil among others (Ibuki et al., 2007;
Albino et al., 2009; Dickey et al., 2009; Mattsson et al., 2009; Watters
et al., 2009).

2.1. Beams and nails of chromatin knowledge in bivalve molluscs

The development of chromatin-based gentoxicity tests consti-
tutes a feasible goal in model organisms such as human and mouse,
for which an important body of knowledge pertaining chromatin-
associated factors, remodeling mechanisms and histone variants has
been amassed during the last 25 years (Ko et al., 2008; Srivastava
et al., 2009; Talbert and Henikoff, 2010; Zhou et al., 2011). None-
theless, such information is very limited or absent in many non-
mammalian organisms. Molluscs are not an exception to this, making
a difficult access to the structural andmetabolic processes of chromatin
in these organisms and by default to their potential application in the
study of genotoxicity. During the last decade, work from our research
group has started to fill this gap by studying chromatin in bivalve
molluscs (Eirín-López et al., 2009). As a result, histone multigene
families from several species (including mussels, clams and razor
clams, among others) have been widely characterized (Eirín-López
et al., 2002, 2004b; González-Romero et al., 2008, 2009). Our evolu-
tionary analyses have shown that these families evolve subject to a pro-
cess known as birth-and-death evolution, which is responsible for the
genetic diversification observed among histone family members
(Eirín-López et al., 2004a; González-Romero et al., 2008; González-
Romero et al., 2010).

However, it remained to be demonstrated whether histone variants
with dedicated functions were already evolutionary differentiated in
this group of organisms and if so, how could they be used in genotoxi-
city studies. Our most recent unpublished studies on this topic strongly
suggest that the answers to both questions are in fact affirmative.
Firstly, transcriptomic analyses carried out on different species of bi-
valves have provided evidence for the presence of genes encoding
histone variants H2A.X, H2A.Z and H3.3 (manuscript in preparation).
These genes are transcribed and translated into protein products
that exhibit a high extent of similarity with those found in chordates,
suggesting their participation in similar functional roles. Secondly,
screening of OA-specific expression libraries frommussels has revealed
that at least H2A.Z is specifically downregulated in response to harmful
levels of OA, pointing toward its involvement in the maintenance of
genomic integrity in response to this biotoxin (manuscript in prepa-
ration). Such hypothesis is supported by the ability of mussel H2A.Z
to dynamically affect chromatin structure, as we have evidenced by
preliminary nucleosome reconstitution experiments. This prelimi-
nary work has significant implications for the study of chromatin
not only because it represents the first description of functionally
differentiated variants in bivalve molluscs but also more impor-
tantly, as it provides the basis for an innovative and multidisciplin-
ary exploration of the potential application of histone variants as
biomarkers for genotoxicity.
2.2. Chromatin-based genotoxicity tests: a leap forward in the study of
marine biotoxins

The genotoxic effects of OA will have their imprint on the pro-
cesses involved in the maintenance of genome integrity. For one,
its phosphatase-inhibitory activity will interfere with signaling mecha-
nisms involved in DNA repair and apoptosis (Bialojan and Takai, 1988).
Also, OA will affect the chromatin metabolism processes (recruitment
of histone variants and associated PTMs) relatedwith genome integrity.
Indeed, it has been demonstrated that OA causes a significant reduction
in DNA repair and cellular viability (Chowdhury et al., 2005), as well as
defects in cell cycle checkpoint recovery as indicated in Fig. 2B (Carlessi
et al., 2010). Thus, the development of molecular assays using histone
variants as biomarkerswill represent a leap in the study of OAgenotoxi-
city in bivalvemolluscs due to their high sensitivity and ability to detect
early response to DNA damage. By defining the cause-and-effect rela-
tionship between OA exposure and the activation of apoptosis and
DNA repair mechanisms, these tests will set up a pattern that could be
applied on natural populations and will be of an outmost interest for
the conservation and health reasons outlined earlier.

An important part of the specialization imparted by H2A.X, H2A.Z
and H3.3 to chromatin is involved in themaintenance of genome integ-
rity and transcriptional regulation (Ausió, 2006; Eirín-López and Ausió,
2007). Therefore, a first stage in assessing the potential of these variants
as genotoxicity biomarkers will require the characterization of the
structural constraints that lead to the specific function of these variants
in nucleosomes from bivalve molluscs (Fig. 3A). However, the analysis
of PTMs affecting these variants in response to DNAdamage (i.e., immu-
nodetection of phosphorylation of terminal Serine in H2A.X and Lysine
acetylation in H2A.Z) will also be critical for the assessment of the
genome-wide distribution of the chromatin marks involved in this
process, especially as it pertains to DSB lesions. A second stage in
the development of chromatin-based genotoxicity tests should be
framed around the study of the mechanisms specifically involved in
the response to OA. To this end, the comparison of transcriptomes
obtained from individuals exposed to increasing concentrations of
OA may represent a very powerful tool in defining candidate genes
involved in the molecular response to this biotoxin, especially for
those of histones with a potential role in DNA repair (Fig. 3B). As
mentioned above, this approach has already produced information
regarding the downregulation of H2A.Z in response to high OA con-
centrations (manuscript in preparation). Its further development
will be very relevant at the time of preparing powerful analytical
tools such as microarrays designed for the rapid and efficient diag-
nostic identification of genes involved in the OA response.
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The final purpose of developing chromatin-based genotoxicity
tests seeks to evaluate the effect of OA in natural populations of
bivalve molluscs. However, this would require a previous set up
of the experimental conditions in the lab, including the analysis of
H2A.X, H2A.Z and H3.3 expression levels (in response to increasing
OA concentrations) as well as the immunodetection and quantification
of PTMs associated with DNA repair (especially phosphorylation of
H2A.X). The expectation being that the outcome of these experiments
will shed light into the potential cause-and-effect relationship between
OA exposure and the response of chromatin metabolism, which would
represent the basis for the application of these tests to natural popula-
tions in the marine environment (Fig. 3C).
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3. Concluding remarks

The genotoxic effects of different pollutants are mirrored by alter-
ations of chromatin metabolism, including DNA repair and replication,
regulation of gene expression and cell division, among others. Conse-
quently, the development of chromatin-based tests for detecting and
evaluating the genotoxic effect of biotoxins represents an important ad-
vance in the biomonitoring of pollution in the marine environment.
Comparedwithmore traditional approaches based on the biomonitoring
of physiological parameters, the implementation of such tests have the
potential for an earlier andmore sensitive way of detection of the geno-
toxic effects of biotoxins such as OA. The resulting subsequent improve-
ment will help design new strategies of evaluation of DNA damage,
optimization of harvesting techniques and an enhancement of the
quality controls used to monitor and ensure consumer's health.
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