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Abstract: Okadaic Acid (OA) constitutes the main active principle in Diarrhetic Shellfish 

Poisoning (DSP) toxins produced during Harmful Algal Blooms (HABs), representing a 

serious threat for human consumers of edible shellfish. Furthermore, OA conveys critical 

deleterious effects for marine organisms due to its genotoxic potential. Many efforts have 

been dedicated to OA biomonitoring during the last three decades. However, it is only now 

with the current availability of detailed molecular information on DNA organization and the 

mechanisms involved in the maintenance of genome integrity, that a new arena starts 

opening up for the study of OA contamination. In the present work we address the links 

between OA genotoxicity and chromatin by combining Next Generation Sequencing (NGS) 
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technologies and bioinformatics. To this end, we introduce CHROMEVALOAdb, a public 

database containing the chromatin-associated transcriptome of the mussel Mytilus 

galloprovincialis (a sentinel model organism) in response to OA exposure. This resource 

constitutes a leap forward for the development of chromatin-based biomarkers, paving the 

road towards the generation of powerful and sensitive tests for the detection and evaluation of 

the genotoxic effects of OA in coastal areas. 

Keywords: okadaic acid; Harmful Algae Blooms; mussels; chromatin; database;  

Mytilus galloprovincialis 

 

1. Introduction 

Massive algal proliferations are among the most important sources of contamination in the sea. These 

episodes may arise as a consequence of either natural or anthropogenic causes, leading to large 

accumulations of algae in the marine environment [1]. Quite often, massive algal proliferations include 

blooms of toxin-producing organisms known as Harmful Algal Blooms (HABs), producing high 

concentrations of potentially harmful biotoxins that are accumulated throughout the food chain. Among 

HAB biotoxins, Diarrhetic Shellfish Poisoning (DSP) toxins are especially predominant across 

European coasts, causing alterations in the gastrointestinal system of human consumers of contaminated 

shellfish [2,3]. The main active principle in DSPs is Okadaic Acid (OA) [4], which is synthesized by 

dinoflagellates of the genera Dinophysis and Prorocentrum [5]. OA has genotoxic potential, constituting 

a tumor promoter and apoptosis inducer able to cause DNA oxidative damage [6,7]. Particularly, DNA 

Double Strand Breaks (DSBs) stand out for their severity among the genotoxic effects exerted by OA 

and require the activation of prompt repair mechanisms in order to avoid serious damage in the cell [8,9]. 

During the last 30 years, fisheries and aquaculture-based industries have experienced important 

economic losses due to the dramatic increase in the diversity of toxic algal species and the toxins they 

produce [10], constituting a serious threat for human consumers [1]. Consequently, a very important 

effort has been devoted to OA biomonitoring in estuarine areas by using sentinel organisms, most 

notably bivalve molluscs [9,11]. These studies have progressively transitioned from traditional 

biomonitoring methods (based on physicochemical and physiological parameters) to more sensitive 

molecular probes [12–15]. Given the role of chromosomal proteins in the modulation of chromatin 

structure and DNA metabolism (including DNA repair) [16], the study of chromatin-associated 

biomarkers constitutes a powerful and sensitive approach for the evaluation of genotoxicity. The 

usefulness of chromatin-based genotoxicity tests has already been demonstrated in mammals, where 

histone H2A.X phosphorylation has been used to assess the extent of DNA repair following exposure of 

cells to DNA-damaging agents [17–19]. Yet, this approach is largely unexplored in those organisms 

where chromatin information is scarce, including bivalve molluscs [20]. Furthermore, the lack of 

knowledge regarding gene and protein sequences in these organisms constitutes a very important barrier 

for the analysis of high-throughput -omic data, especially as it pertains to data assembly and annotation 

of highly divergent and/or lineage-specialized genes [20–23]. Even though the genome sequence of the 
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Pacific oyster Crassostrea gigas has been recently published [24], the amount of information available 

for marine bivalves remains scarce compared to other model organisms in spite of their environmental value.  

In the present work we specifically address the links between OA genotoxicity and potential 

chromatin-associated biomarkers by combining Next Generation Sequencing (NGS) technologies and 

bioinformatics. To this end, we introduce CHROMEVALOAdb [25], a database containing the 

chromatin-associated transcriptome of the mussel Mytilus galloprovincialis in response to OA exposure. 

The information provided in this database includes fully traceable raw ESTs assembled into consensus 

sequences and classified into unigenes linked to Gene Ontology (GO) information (function, process and 

subcellular compartment) as well as to expression information in response to OA. CHROMEVALOAdb 

allows for the manual browsing and keyword-based search of chromatin-associated contigs. In addition, 

the whole OA-specific transcriptome can be accessed by using built in BLAST and CLUSTAL W tools. 

Overall, the present work constitutes a leap forward in the study of the genotoxic effect exerted by OA in 

these organisms, paving the road towards the development of chromatin-based tests for detecting and 

evaluating the genotoxic effect of OA in the marine environment. 

2. Results and Discussion 

2.1. Sequencing and Annotation of OA-Specific ESTs in M. galloprovincialis 

Mussels (M. galloprovincialis) were sampled in an area of the Galician coast (northwest Spain) 

subject to a low impact of dinoflagellate blooms. Specimens were experimentally exposed to OA in the 

laboratory (Figure 1, see Experimental Section) using a set of conditions that were previously proven to 

cause significant genotoxic damage (200 cells/mL of the OA-producing dinoflagellate Prorocentrum lima, 

1 day exposure) [9,26]. The accumulation of OA in digestive gland tissue was subsequently confirmed 

by HPLC-MS quantification (Table 1).  

Figure 1. Experimental settings for the exposure of mussels to Okadaic Acid (OA), 

specifying the environmental conditions for treated (additionally fed with OA-producing 

microalgae P. lima) and control groups of mussel individuals. 
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Table 1. HPLC-MS quantification of OA in digestive gland tissue. 

Experimental conditions OA-content (ng/g) 

Control Below detection limit (~0) 

OA-exposed 18.27 

Raw normalized libraries constructed from mussel specimens exposed and non-exposed to OA were 

sequenced using pyrosequencing technology at 40× depth, producing 493,440 and 491,109 raw reads for 

the control (NORM_MGC) and the OA-exposed (NORM_MGT) libraries, respectively. These data 

allowed the assembly of 16,395 consensus sequences in the case of the control library and 24,624 consensus 

sequences from the OA-exposed library, with average length values of 712 and 644 bp, respectively. 

Approximately 44% of the assembled sequences (17,952) were annotated by using BLAST (blastx) 

homology searches against non-redundant (nr) protein databases, including 7335 contigs in the control 

library and 10,617 contigs in the OA-exposed library (38% and 45%, respectively), setting an 

expectation (e) value of 1 × 10
−6

 or better (Table 2). 

Table 2. Amount of data in each step of the data processing pipeline. 

Library Reads Contigs Annotated Sequences 

NORM_MGC (control) 493,440 16,395 7335 

NORM_MGT (OA-exposed) 401,109 24,624 10,617 

 Contigs Unigenes Differentially Expressed 

TOTAL 41,019 2131 1254 

CHROMATIN-ASSOCIATED 14,480 1124 90 

2.2. Novel Chromatin-Associated Transcripts in CHROMEVALOAdb 

Chromatin-associated transcripts were identified from the assembled OA-specific transcriptome from 

M. galloprovincialis by following two complementary strategies (see Experimental Section for details). 

On one hand, a list of keywords identifying chromatin-associated components was used to screen 

annotated transcripts regarding sequence description and related gene ontology terms  

(Supplementary Figures S1 and S2). On the other hand, BLAST homology comparisons were 

performed against specialized chromatin databases. The combination of both strategies resulted in the 

identification of 14,480 chromatin-associated contigs in control and OA-exposed libraries among which 

1124 were identified as chromatin-associated unigenes (Table 2). The analysis of gene expression 

profiles (Supplementary Figure S3) allowed us to define groups of statistically significant unigenes 

upregulated and downregulated in the presence of OA (a total number of 1254) among which 90 were 

identified as chromatin-associated (Table 2). This information, along with gene ontology and expression 

profile data, constitutes the core of CHROMEVALOAdb. 

The ontological analysis of the biological processes on which the identified chromatin-associated 

unigenes could be potentially involved revealed that cellular and metabolic processes are most 

significantly deregulated in response to OA (Figure 2). Furthermore, a significant deregulation of genes 

involved in chromatin remodeling (inhibited) and transmembrane transport (overexpressed) was 

identified through global ontological analyses based on the whole OA-specific transcriptome (Fisher’s 

exact test approach using topGO R-bioconductor package, Supplementary Figure S4). Even though 
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additional experimental studies will be needed to decipher the functional role of chromatin-associated 

unigenes in response to OA, these results may be indicative of an activation in protective detoxifying 

mechanisms in mussels after one day of exposure to OA, once DNA has been repaired. 

Figure 2. Biological processes on which chromatin-associated unigenes could be potentially 

involved during the response to OA. 

 
Note: The GO terms ―viral reproduction‖ and ―reproduction‖ appear due to the role of 

chromatin-associated proteins in these biological processes. 

Comparisons between OA-specific EST information from CHROMEVALOAdb and Mytilus ESTs 

information from the MytiBase EST knowledge database [27] revealed that approximately 25% of the 

chromatin-associated sequences contained in CHROMEVALOAdb are redundant with MytiBase 

sequences. This extends also to the case of the complete OA-specific transcriptome, with a 30% of the 

ESTs being redundant with MytiBase sequences considering no identity cutoff value (manuscript in 

preparation). In other words, approximately 75% of the ESTs contained in CHROMEVALOAdb 

constitute previously unknown transcripts in the mussel M. galloprovincialis, establishing a very 

important contribution not only for the study of OA chromatin-associated biomarkers, but also for the 

characterization of the mussel genome. 

2.3. Availability, Management and Application of Data Stored in CHROMEVALOAdb 

Management of data quality constitutes a basic requirement of NGS projects that is often overlooked, 

resulting in the loss of important information for fine sequence curation and identification of DNA 

polymorphisms, among other quantitative analyses. The structure of CHROMEVALOAdb strengthens 

this aspect by providing full access to raw reads used to assemble the consensus sequences annotated in 

the database. This feature facilitates the alignment of quality-filtered raw sequences, establishing links 

with specific expression patterns in response to OA. Furthermore, the availability of the full dataset of 

contigs allows users to retrieve anonymous sequences by using the BLAST tool interface and 
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communicate new chromatin-associated findings through a standardized feedback form, contributing to 

the curation of the information in CHROMEVALOAdb. Processed data, on the other hand, is also 

downloadable as flat text files containing information that can be filtered by keywords (Figure 3). 

Figure 3. Diagram showing the pipeline of data management in CHROMEVALOAdb. 

Starting from files containing the fully annotated transcript libraries, the selection of 

chromatin-associated sequences is carried out through semantic and homology search 

approaches. Sequences and annotations are organized in the relational structures of the database 

and made available through web interface, including data retrieval and feedback utilities. 

 

The information contained in CHROMEVALOAdb serves a dual purpose. First, it helps identify 

previously unknown chromatin-associated transcripts in the mussel M. galloprovincialis, specially 

histone variants and chromatin remodeling factors (Figure 4A,B). This aim is motivated by the role of 

chromatin-associated proteins in the maintenance of genome integrity, most notably in the case of DNA 

DSB repair [20,23]. Within this context, the generation of new molecular data and its organization in 

CHROMEVALOAdb helps increase the knowledge about mollusc chromatin, setting up a framework 

for studying its role in DNA repair. The second purpose of CHROMEVALOAdb is to establish 

cause-effect relationships between OA exposure and specific expression patterns of 

chromatin-associated factors involved in the maintenance of genome integrity. This approach will help 

identify potentially sensitive biomarkers of OA genotoxic effect. To this end, CHROMEVALOAdb 

provides differential expression information for chromatin-associated unigenes, using an intuitive 

graphical format based on arrows (up-regulated and down-regulated transcripts, Figure 4C). The 

combination of the newly characterized DNA sequences together with their associated expression 

information in response to OA paves the road towards the development of chromatin-based tests for 

detecting and evaluating the genotoxic effect of OA in the marine environment. 
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Figure 4. Chromatin-associated sequence query and results. CHROMEVALOAdb provides 

access to a search engine allowing users to find transcripts differentially expressed in 

response to OA. (A) Searches can be performed on the basis of sequence homology 

(BLAST) or keywords. (B) Results from individual unigenes provide gene ontology 

information as well as details on the contigs included in a given unigene. (C) Differential 

expression information (upregulated and downregulated transcripts) for the 

chromatin-associated unigenes is presented through an intuitive format using arrow icons. 

 

3. Experimental Section  

3.1. Synthesis of ESTs Libraries and Transcriptome Assembly  

Mussel specimens (M. galloprovincialis) were sampled in Valcobo beach, Galicia (northwest coast of 

Spain, 43°19′02.71″N 8°21′56.35″W) and immediately transported to the laboratory thereafter where 

they were maintained under controlled light/temperature conditions and fed with a standard mixture of 

the microalgae Isochrysis galbana and Tetraselmis suecica (Figure 1). Individuals were subsequently 
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divided into a control group and a group exposed to OA that was additionally fed with a culture of the 

DSP-producing microalgae P. lima (200 cells/mL for 24 h). The quantification of OA in digestive gland 

tissue was performed by using high performance liquid chromatography coupled to mass spectrometry 

(HPLC-MS). Extraction of mRNA was subsequently performed from pooled digestive gland tissue 

(hepatopancreas) from five individuals in each group. The choice of this tissue as mRNA source is 

motivated by its ability to accumulate the biotoxin in large amounts and its detoxifying role in mussel 

metabolism [28].  

cDNA libraries were synthesized using the SMARTerTM PCR cDNA synthesis kit (Clontech, 

Mountain View, CA, USA) with an extra purification step using GeneJET™ PCR Purification Kit 

(Thermo Scientific, Waltham, MA, USA), and normalization was performed following the protocol of 

the Trimer cDNA Normalization Kit (Evrogen, Moscow, Russia). Libraries were sequenced using 

Roche-454 FLX+ Titanium pyrosequencing, obtaining both exposed and control datasets. Reads from 

both libraries were pre-processed (quality filtering and contaminantion removal) by combining the 

CD-HIT-454 [29] and the BLAST+ software [30] implemented in the SeqtrimNext pipeline [31], as well 

as the Cutadapt v1.0 software [32]. Sequence assembly was carried out using MIRA v.3.4.0 sequence 

assembler [33]. The sequences described in this work are available at the Sequence Read Archive (SRA) 

database under the accession number SRA056210. 

3.2. Database Contents, Accessibility and Tool Implementation 

The relational structure of CHROMEVALOAdb was developed using MySQL, allowing full 

traceability of raw ESTs from consensus sequences of individual genes. Contigs are classified into 

unigenes to eliminate redundancy based on BLAST analysis parameters (same top blastx hit, mean 

similarity larger than 80% and an e-value below 1 × 10
−10

). The descriptions of the unigenes are linked 

to their corresponding contigs and to ontology annotations. All the information stored in 

CHROMEVALOAdb is freely available for browsing and downloading without login or registering 

requirements. The information gathered by CHROMEVALOAdb is managed through Perl-written 

Common Gateway Interfaces (CGIs) that communicate with the Relational Database Management 

System (RDBMS) MySQL using Perl’s database interface (DBI) module. Server-side tools for sequence 

alignment, data visualization and result formatting/retrieval are administered by built in HTML web 

interfaces. BLAST results are formatted and interactively presented in HTML format including 

graphics, using Bioperl packages. Multiple sequence alignments are generated using CLUSTAL W [34] 

and displayed with an embedded applet of the alignment editor Jalview [35,36]. Local data is linked to 

reference public databases such as NCBI repositories for extended homolog sequence descriptions and 

AmiGO [37] for gene ontology term definitions.  

3.3. Gene Annotation and Expression Analysis 

The functional annotation of the consensus read assemblies was carried out using the Blast2GO  

suite [38], combining Gene Ontology (GO), InterProScan (IPS) protein domain information [39] and 

annotation enrichment using ANNEX [40]. Additionally, full-length transcripts were subsequently 

identified using the Full-Lengther tool [41]. Identification of chromatin-associated transcripts was 

subsequently implemented following two complementary strategies. First, a keyword-based routine was 
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defined to identify chromatin-associated transcripts among sequence descriptions and related ontology 

terms (Supplementary Materials S1 and S2). Secondly, BLAST (blastn and blastx) homology searches 

were performed against the Histone Database [42], as well as against ChromDB [43] and CREMOFAC [44] 

databases, setting an e-value threshold of 1 × 10
−10

. Functionally annotated and classified sequences, 

along with relevant metadata, are organized and stored in CHROMEVALOAdb. 

The biological processes on which the identified chromatin-associated unigenes could be potentially 

involved were studied by performing ontological analyses based on GO terms (Supplementary Figure S3). 

Expression profiles in response to OA were further studied by comparing control and OA-exposed 

libraries, using the edgeR package from R-Bioconductor [45] with the False Discovery Rate (FDR) 

threshold set to 0.1 (Supplementary Figure S4). Read count for each assembled sequence was performed 

using SQL-based queries on the raw data contained in CHROMEVALOAdb. This approach allowed us 

to define groups of statistically significant unigenes upregulated and downregulated in the presence of OA.  

4. Conclusions 

CHROMEVALOAdb provides a powerful resource to investigate the molecular basis underlying the 

genotoxic effect of OA in mussels and for understanding the chromatin-associated mechanisms that 

counteract the harmful effect of this toxin in these organisms (i.e., mechanisms involved in DNA repair). 

Furthermore, it allows the establishment of cause-effect relationships between OA and the differential 

expression of chromatin-associated factors involved in DNA DSB repair, helping to identify potential 

sensitive biomarkers for the development of chromatin-based OA genotoxicity tests. The 

implementation of these tests in natural populations has critical implications for the evaluation of DNA 

damage in commercially relevant organisms, the optimization of their harvesting and the elaboration of 

additional tests designed to evaluate the safety of their consumption and potential implications for 

consumer’s health. The design of CHROMEVALOAdb sets the basis for the future integration of 

model-based and semi-automated curation systems. In addition, the characterization of additional 

transcriptomes (i.e., at different stages of the genotoxic stress and in different tissues), together with data 

integration and workflow automation for interactome network development, constitute future objectives 

for the improvement of the database. Altogether, these approaches will help increase the knowledge of 

the chromatin-associated mechanisms involved in the response to the genotoxic effect of OA, by using 

Knowledge Discovery in Databases (KDD) techniques. 
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