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Abstract: Harmful Algal Blooms (HABs) constitute one of the most important sources of 

contamination in the oceans, producing high concentrations of potentially harmful 

biotoxins that are accumulated across the food chains. One such biotoxin, Okadaic Acid 

(OA), is produced by marine dinoflagellates and subsequently accumulated within the 

tissues of filtering marine organisms feeding on HABs, rapidly spreading to their predators 

in the food chain and eventually reaching human consumers causing Diarrhetic Shellfish 

Poisoning (DSP) syndrome. While numerous studies have thoroughly evaluated the effects 

of OA in mammals, the attention drawn to marine organisms in this regard has been scarce, 

even though they constitute primary targets for this biotoxin. With this in mind, the present 

work aimed to provide a timely and comprehensive insight into the current literature on the 

effect of OA in marine invertebrates, along with the strategies developed by these 

organisms to respond to its toxic effect together with the most important methods and 

techniques used for OA detection and evaluation. 
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1. Introduction 

Oceans play a seminal role in the different biogeochemical cycles on earth, housing an immense 

diversity of life forms organized in tightly connected trophic levels throughout different ecosystems. 

Not surprisingly, such a frail equilibrium is very often disturbed by diverse causes, both natural and 

anthropogenic. Whichever the origin, the severity of these alterations reach paramount relevance when 

the natural balance in populations of primary producers, the phytoplankton, is affected. Among the 

different sources of contamination, massive algal proliferations stand out due to the frequent presence 

of toxin-producing organisms, constituting Harmful Algal Blooms (HABs). High concentrations of 

potentially harmful biotoxins are produced and accumulated across the food chains as a result of 

HABs, causing deleterious effects for organisms in upper trophic levels and threatening the ecosystem 

integrity [1]. 

HAB biotoxins are prevalent across European coasts, most notably Diarrhetic Shellfish Poisoning 

(DSP) toxins are responsible for alterations in the gastrointestinal system of human consumers of 

contaminated shellfish [2]. Although first documented in Japan [3], the DSP syndrome is now a global 

disease caused by toxins of the Okadaic Acid (OA) group [4], including OA [5] and its analogs 

DinophysisToXin-1 (DTX1), dinophysistoxin-2 (DTX2) and their acyl-derivatives, generally known as 

dinophysitoxin-3 (DTX3). OA constitutes a polyether-type secondary metabolite firstly isolated from 

the marine sponge Halichondria okadai [6] and usually produced by dinoflagellates of the Dinophysis 

and Prorocentrum genera [7,8]. Given their lipophilicity, OA toxins are easily accumulated on tissues 

of filtering marine organisms feeding on HABs, rapidly spreading to their predators in the food chain 

and eventually reaching human consumers. The negative effects of OA, together with the economic 

losses associated to HAB episodes, have motivated numerous studies aimed to evaluate the modes of 

this toxin at cellular and molecular levels. This has been primarily illustrated by research efforts using 

mammalian cell lines as model systems, revealing the ability of OA to promote tumors and induce 

apoptosis [9,10]. Nonetheless, the attention drawn to marine organisms in this regard has been scarce 

so far, even though they constitute primary targets for OA [11]. 

2. Methods Used for the Detection of Okadaic Acid 

The great diversity of toxic compounds produced by phytoplankton and their associated bacteria in 

the sea (marine biotoxins) requires complex detection and quantification strategies. During the last  

40 years, the development of such strategies walked hand in hand with the technological progress in 

life sciences, resulting in a wide range of detection and quantification approaches that can be globally 

classified into analytical and non-analytical methods, depending on whether or not they are able to 

unequivocally identify and quantify the toxins in a given sample [12]. Nevertheless, given that 

different detection methods rely on either biological or chemical (or a combination of both) 
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parameters, the present work addresses them following this classification of biological, chemical and 

biochemical methods (Figure 1). 

Figure 1. Methods most commonly used for Okadaic Acid (OA) detection and 

quantification in marine environmental samples. 

 

2.1. Biological Methods 

Among the different approaches for detecting marine biotoxins, those based on biological 

parameters were the first to be developed and are currently the most widely used. The biological 

detection of OA is based on the study of its toxicological effect on either animals, or tissues or cells. 

The Mouse BioAssay (MBA) stands out among biological methods because of its wide application [3] 

and for constituting the standard operating procedure for the detection of OA in food samples 

(European Union regulation EC No. 2074/2005). Yet, the application of the MBA is hampered by its 

low specificity and sensitivity as well as relying on the use of test laboratory animals, raising ethical 

and technical drawbacks [12]. Consequently, the development of alternative methods of improving or 

replacing the MBA has been fostered by authorities (EC No. 15/2011), including the development of 

biological detection methods using alternative test organisms such as the planktonic crustacean 

Daphnia magna (Daphnia bioassay), which constitutes an inexpensive tool able to measure OA levels 

up to 10 times below the threshold of the MBA [13]. Nonetheless, this method still lacks sufficient 

sensitivity to completely replace the MBA [14]. Similarly, alternative detection strategies based on 

molecular methodologies have been put forward, including cytotoxic assays based on the study of 

morphological changes of cultured cell lines exposed to OA [15–17]. Such approaches provide 

increased levels of sensitivity in the detection of OA while abolishing the use of test laboratory 

animals. Altogether, the progress in the development and optimization of biological methods for OA 

detection opens up the door to a very promising future of new developments. 



Mar. Drugs 2013, 11 2832 

 

2.2. Chemical Methods 

Although biological methods constitute the preferred approach for detecting marine biotoxins they 

are unable to provide a quantitative measure of the studied compounds. Such inconvenience has led to 

the development of chemical detection and quantification methods based on the chromatographic 

properties of biotoxins [18,19]. The chemical methods most frequently used for the detection of OA 

are based on Liquid Chromatography (LC) or High Performance Liquid Chromatography (HPLC) 

separation strategies, coupled with several detection methods including Mass Spectrometry (LC-MS), 

tandem mass spectrometry (LC-MS/MS), FLuorimetric Detection (HPLC-FLD) and UltraViolet 

Detection (HPLC-UVD) [12,20,21]. In addition, alternative chromatography-based chemical methods 

are also available for the detection of OA (though much less used) including Gas Chromatography 

(GS) [22] and Micellar Electro Kinetic Chromatography (MEKC) [23]. 

2.3. Biochemical Methods 

For quite some time, the development of simple, rapid, sensitive, reproductive and inexpensive 

detection methods for OA has become a major goal, given the critical relevance of this biotoxin during 

DSP episodes on the European coasts [18,24–26]. Within this scenario, the combination of biological 

and chemical methods has provided the basis for the development of very powerful biochemical 

strategies currently being applied in the detection and quantification of OA. Among them, the 

inhibitory effect of this biotoxin on protein phosphatases is the most widely used target in detection 

routines [27]. This is the case of the Protein Phosphatase 2A (PP2A) inhibition assay, a biochemical 

method able to accurately detect and quantify OA [28]. Overall, the effectiveness of different methods 

to detect OA has been widely documented during the last 20 years, with most of them suggesting that 

both chemical and biochemical strategies could eventually replace the MBA as the standard method 

for OA detection [29–36] (Figure 1). Nevertheless, the MBA method will still be preferred as long as 

some biochemical methods keep underestimating the total amount of toxin present in the samples [29]. 

However, ELISA assays based on direct labeling, which are more sensitive to OA than tests based on 

indirect labeling, are currently being developed [37]. 

3. Response Strategies to Okadaic Acid in Marine Invertebrates 

OA encompasses critical relevance in the marine environment of European coasts due to its role in 

toxic HABs. Furthermore, a progressive increase in OA has also been recently described in North 

American coasts [38]. Consequently, the study of the mechanisms involved in the accumulation and 

depuration of OA in marine organisms holds the key for a better understanding of the deleterious effect 

of this biotoxin in the ecosystems, as well as for the efficient management of toxic episodes, 

minimizing their effect on human health. So far, the combination of analytical methodologies with the 

study of sentinel marine organisms has helped understand not only the ways of OA within the cell but 

also its transmission across the food chain (Figure 2). 
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Figure 2. Schematic diagram depicting the transmission of OA across invertebrates in a 

typical marine food chain. The biotoxin produced by Harmful Algal Blooms (HABs) is 

initially accumulated by herbivorous consumers including zooplankton, annelids, bivalves 

and other invertebrates (light pink arrows). OA is subsequently transmitted and further 

accumulated by their predators, including crustaceans, gasteropods and echinoderms. 

Bivalves (either harvested or benthic) and crabs (to a lesser extent) are the commonest 

vectors transmitting OA to human consumers (red arrows) causing Diarrhetic Shellfish 

Poisoning (DSP) syndrome. 

 

3.1. Bivalve Molluscs 

In bivalve molluscs, OA is mainly absorbed and accumulated in the digestive gland either in a free 

form or (in the most part) associated with high density soluble lipoproteins [39]. This association 

results in the sequestration of OA, preventing its transportation to other tissues and hindering its 

elimination from the organism. On the contrary, free OA is easily transported and quickly removed by 

means of different passive detoxification mechanisms such as direct OA excretion through the gill or 

the digestive system [40,41]. In addition, active depuration of OA in bivalves has also been 

investigated, although it was eventually ruled out by independent studies based on environmental and 

endogenous factors. On the one hand, it was demonstrated that regulation of OA depuration is 

insensitive to immediate environmental changes [42]. On the other hand, additional reports indicated 

that neither organism size nor age play a decisive role in the depuration rate of OA, suggesting that 

depuration rates cannot be accelerated, even in artificial systems, as a cost-effective way to solve the 

problem with toxic mussels for the industry [43]. 
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Since most OA is sequestered by lipoproteins in the digestive gland, different studies have proposed 

that a possible depuration mechanism could involve the association between high density lipoproteins 

and ATP-Binding Cassette (ABC) transporters, similar to those involved in the removal of excess 

cholesterol from cells [39,44]. However, what seems now clear is that transformation processes as 

hydrolysis (during digestion) and, most importantly, acylation are decisive for the metabolism of OA, 

producing free toxin and esters. Indeed, the rapid bioconversion of OA to 7-O-acyl derivates can be 

taken as a defense mechanism against this biotoxin, though the hydrophobic nature of the esters may 

slow their elimination from tissues via body fluid [45]. Although a role in OA acylation was initially 

ascribed to bacteria present in the bivalve gut [46], it was later demonstrated that in mussels the OA is 

primarily transformed in the endoplasmic reticulum [47]. Acylation seems to play a major role in OA 

depuration, yet, further studies are still needed in order to ascertain the mechanisms underlying 

depuration rates of different toxins in different bivalve species [48]. 

3.2. Crabs and Annelids 

It is well known that OA is accumulated by different organisms throughout the marine food chains, 

including mussels, clams, crabs and sponges, among others (Figure 2). Consequently, their predators 

are also prone to its bioaccumulation, most notably crustaceans, gastropods, starfishes or sea urchins [49]. 

Indeed, food poisoning episodes caused by OA esters have been reported in human consumers  

from Portugal and Norway after ingestion of green crab (Carcinus maenas) and brown crab  

(Cancer pagarus) [50–52], respectively. Not surprisingly, these episodes were coincident with periods 

of high levels of OA in mussels, although consumption of other bivalves and crustaceans was still 

permitted. Such scenario supports the study of OA bioaccumulation and depuration also in predators of 

bivalves, representing a critical objective in improving the safety in the food industry [53]. 

As for the case of molluscs, annelids are also widely used as sentinel organisms in ecotoxicology 

studies [54]. Although not directly exposed to OA, different reports have described morphological, 

functional and toxicological effects in different populations of the annelid Enchytraeus crypticus. 

Firstly, time- and dose-related effects were detected, including swelling of the coelomatic cavity, an 

increased number of circulating coelomocytes, extension of chloragogenous tissue and general cell 

suffering in the main animal organs [55]. Secondly, additional studies unveiled an age-dependent 

effect of OA, with older worms being more sensitive and less able to recover from OA exposure than 

younger ones [56]. Interestingly, both studies suggested that in this organism the response to OA is 

coupled with immune response. 

3.3. Zooplankton and Phytoplankton 

Since zooplankton constitutes the trophic level right above phytoplankton, its role as vector of OA 

in the marine environment is critical and well documented [57–59] (Figure 2). However, not all 

zooplankton species are equally susceptible to biotoxins. For example, the copepods Temora longicornis 

and Oitona nana, as well as the tintinnid Favella serrata, feed on toxic phytoplankton whereas other 

copepods such as Acartia clausi and Euterpina acutifrons do not. Nonetheless, as T. longicornis and 

O. nana populations decrease after HABs, the density of F. serrata increases thanks to the ingestion of 

toxic dinoflagellates [58]. These results are supported by previous analysis revealing a co-ocurrence in 
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density peaks of the toxic dinoflagellate Dinophysis acuminata and F. serrata, suggesting a trophic 

relationship between both groups [60]. Although some zooplankton species cannot digest toxic 

phytoplankton they are still able to transfer biotoxins between different trophic levels, as the faecal 

pellets with undigested dinoflagellates and OA can be assimilated by pelagic coprophagous organisms. 

In addition, sedimented pellets can be assimilated by a wide community of zooplanktonic organisms 

(ciliates, harpacticoid copepods, etc.) or even by detritivorous bivalves and other benthonic species [58], 

restarting the cycle all over again. 

Besides the known toxic effects of OA on protozoans and metazoans, it has been recently suggested 

that this biotoxin may also induce cytotoxicity in different algal species, constituting an allelopathic 

compound against competing microalgae [61,62]. Although the exact mechanism by which OA 

impairs growth in microalgae is not yet fully known, studies using the green algae Dunaliella 

tertiolecta [63] point towards two major routes: independent and dependent from photosynthesis. 

Accordingly, when a culture of D. tertiolecta is exposed to low OA concentrations, a decrease in cell 

density is produced both in dark and light conditions, with toxicity being greater in the second case. 

Additionally, exposure to OA in light conditions results in a reduction of the photosynthetic electron 

transport rate that may lead to photo-oxidative stress and damage of the photosynthetic apparatus, 

increasing the observed effect of OA on algal culture cell density. 

3.4. Role of OA as Defense Mechanism in Marine Organisms 

The deleterious effect of OA on different groups of organisms has been depicted throughout this 

work. Yet, OA can also fulfill useful roles in several organisms primarily as a defense mechanism 

against pathogens and parasites [64]. This is indeed the case of the marine sponge Suberites 

domuncula harboring bacteria containing OA. Here, low OA concentrations (<100 nM) stimulate the 

defense system against bacteria [65], whereas high OA concentrations (>500 nM) induce apoptosis in 

symbiotic or parasitic annelids [65,66] while preventing self-intoxication in the sponge [67,68]. 

Furthermore, another type of defensive role for OA has been reported in the sponge Lubomirskia 

baicalensis, where OA seems to facilitate the expression of the heat shock protein hsp70 during the 

winter season, helping this species withstand water temperatures of 0 °C below the sea ice [69]. 

4. Genotoxic Effects of Okadaic Acid: Lessons from Bivalve Molluscs 

Within the cell, OA disrupts the serine/threonine protein phosphatases PP1 and PP2A, leading to a 

misregulation in the multiple cellular process as well as to cytotoxic and genotoxic effects on the 

hereditary material. Nonetheless, bivalve molluscs are highly tolerant to OA toxicity [70–72], 

contrasting with the susceptibility displayed by different cell types in other organisms to this  

biotoxin [17,73–76]. Different experiments have attempted to study the basis of such tolerance by 

analyzing the effect of different OA concentrations on mussel blood cells, revealing an increased 

resistance against sublethal concentrations of this biotoxin as a result of multixenobiotic resistance [72]. 

These reports conclude that frequent exposure to OA in the marine environment could account for the 

high tolerance observed in bivalves. In addition, it has been proposed that such resistance could be 

further increased by OA sequestering in the lysosomal compartment, protecting cells from the 

cytotoxic effects of this biotoxin. 
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The molecular mechanisms underlying the deleterious effect of OA have been primarily addressed 

in mammals [77–80], revealing a role of this biotoxin in tumorigenesis and induction of apoptosis [81]. 

On the contrary, the effect of OA in invertebrates is still obscure, with most of the information 

available referring to bivalve molluscs [70–72,82–85]. In addition to their obvious commercial interest, 

bivalves constitute preferred organisms for the study of OA given their surprising resistance to this 

biotoxin [41]. Thus, a growing number of in vitro and in vivo studies have been carried out during 

recent years in order to ascertain the genotoxic and cytotoxic effects of OA in bivalve molluscs, 

especially those encompassing potential applications as pollution biomarkers (Figure 3). Although the 

development of cDNA microarrays [86] and transcriptomic studies [87] have been very useful for 

biomonitoring OA genotoxicity using mussels, the most representative experimental approaches are 

reviewed and discussed below, leaving bioinformatic and Next Generation Sequencing (NGS) 

technologies for more specialized reports. 

Figure 3. Major genotoxic and cytotoxic effects caused by OA in bivalve molluscs and 

evaluation methods more frequently used for each specific case. 

 

4.1. Study of OA Effects on Genome Integrity: The Comet Assay 

Genome and chromosome integrity are crucial requirements for cell survival that are often 

jeopardized by the genotoxic effect of OA, most notably by inducing Strand Breaks (SBs) in the  
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DNA [78,88]. However, the level of SBs can serve a very important purpose as an effective 

genotoxicity biomarker in environmental biomonitoring (Figure 3). The approach most commonly 

used for the detection and evaluation of DNA SBs is the Single Cell Gel Electrophoresis (SCGE) assay 

(or simply known as comet assay) which has been recently updated for its application to marine 

invertebrates [89,90]. More specifically, the comet assay has been used to study the genotoxic effect of 

OA in the clam Ruditapes decussatus [82] by exposing hemocytes to increasing concentrations of OA 

in vitro, revealing a rapid genotoxic effect of OA on the hereditary material. Complementarily,  

in vivo analyses were carried out by feeding clams with different concentrations of the OA-producing 

dinoflagellate Prorocentrum lima. In this case, the study of DNA integrity in hemocytes and gill cells 

after different exposure periods suggested that OA genotoxicity is dependent upon OA concentration 

and cell type. Altogether, these data convey critical value for the optimization of the comet assay in 

bivalves, providing detailed information on the balance between the DNA damage and the activation 

of repair mechanisms triggered by OA exposure. 

4.2. Study of OA Effects on Chromosome Integrity: The Micronucleus Assay 

In addition to DNA SBs, the effect of OA (through its ability to disrupt PP1 and PP2A 

phosphatases) often affects chromosomal segregation, increasing the chances of aneuploidies and other 

cytogenetic abnormalities [91–93]. Different in vitro cytogenetic assays of chromosomal integrity have 

been implemented to evaluate OA mutagenicity in somatic cells, most notably the micronucleus  

assay (Figure 3). This approach, which is based on the detection and quantification of small nuclei 

carrying chromosome segments resulting from anomalous cell divisions, stands out due to its 

simplicity and ability to specifically detect chromosomal abnormalities in somatic cells, including 

chromosome breaks and losses as well as non-disjunction events [72]. 

The micronucleus assay has been successfully applied for the evaluation of the cytotoxic effects 

caused by OA in human cell lines, revealing an aneugenic effect which is dependent upon different cell 

types [80,91,92]. The induction of MicroNuclei (MN) was also corroborated in the case of marine 

invertebrates using hemocytes of the mussel Perna perna [83,84]. In this case, a rapid effect of OA 

followed by a decrease in MN frequency after a 24 h period was reported, in agreement with previous 

studies on other bivalve species [94]. Additional analyses corroborated that mussels fed with 

Prorocentrum lima can accumulate enough OA to induce two types of nuclear abnormalities: 

micronucleus and nucleoplasmic bridges [84]. Again, as in the case of P. perna, a significant increase 

in MN frequency was observed in mussels fed with low concentrations of P. lima, whereas MN 

frequency decreased in mussels subject to high concentrations of this microalgae. Such decrease may 

be representative of an activation in the repair mechanisms of the cell, counteracting the harmful 

effects of OA. 

4.3. Study of OA Effects on Damage Control Mechanisms: Assessment by Flow Cytometry 

The harmful effects of OA on the hereditary material constitute potential targets useful for the 

evaluation of its genotoxic potential. Nonetheless, complementary approaches focused on studying 

how the molecular machinery of the cell responds to OA have also been developed. This is best 

illustrated by the characterization of damage control mechanisms involved in the maintenance of 
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genomic integrity. Although studies on such mechanisms are still scarce in marine invertebrates, it has 

been pointed out that the inhibitory effect of OA on PP1 and/or PP2A phosphatases may be retaliated 

against by the cell through programmed cell death [95] and/or immune-mediated responses [70,71]. 

Flow cytometry, a laser-based technique useful for the identification of cells and their components, 

constitutes the technique of choice for the evaluation of both types of responses in bivalves (Figure 3), 

unveiling a negative correlation between OA body burden and DNA damage in mussels contaminated 

with DSP toxins [70]. The study of OA effect was further extended to cell viability, enzymatic status 

and immune capacity by measuring apoptosis/cell death, non-specific esterase activity and 

phagocytosis in hemocytes of the clam Ruditapes decussatus, respectively. So far, in vitro results 

revealed an increase in apoptosis and cell death as well as a decrease in phagocytosis and esterase 

activity. In contrast, in vivo studies displayed an increase in cell death and esterase activity, together 

with a dose-independent increase in apoptosis [71]. 

5. Conclusions 

Ever since the first documentation on the DSP syndrome in the late 1970s, the interest in the toxins 

of the OA group has experienced continuous growth fueled by the negative effects of these biotoxins 

on marine organisms and human consumers, as well as by the economic losses associated to HAB 

episodes. However, experimental methodologies have not yet reached a unified standard approach able 

to provide enough sensitivity for the efficient detection of OA, thus hindering the study of the 

genotoxic effect and response of marine invertebrates to this biotoxin. So far, more than three decades 

of research in this regard have unveiled that, besides affecting bivalves, OA is also extensively 

accumulated at all levels of the food chain including by many other edible organisms. Such diversity of 

OA vectors opens up the door for the future development of biomonitoring programs using these 

organisms, complementing pre-existing studies based on bivalve molluscs. While this certainly 

constitutes an attractive objective with relevance for environmental health sciences, further studies will 

be required in order to improve the detection of OA and tackle its genotoxic effect at the 

molecular level. 
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