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Abstract: The extraordinary progress experienced by sequencing technologies and 

bioinformatics has made the development of omic studies virtually ubiquitous in all fields 

of life sciences nowadays. However, scientific attention has been quite unevenly distributed 

throughout the different branches of the tree of life, leaving molluscs, one of the most 

diverse animal groups, relatively unexplored and without representation within the narrow 

collection of well established model organisms. Within this Phylum, bivalve molluscs play 

a fundamental role in the functioning of the marine ecosystem, constitute very valuable 

commercial resources in aquaculture, and have been widely used as sentinel organisms in the 

biomonitoring of marine pollution. Yet, it has only been very recently that this complex group 

of organisms became a preferential subject for omic studies, posing new challenges for 

their integrative characterization. The present contribution aims to give a detailed insight into 

the state of the art of the omic studies and functional information analysis of bivalve 

molluscs, providing a timely perspective on the available data resources and on the current 

and prospective applications for the biomonitoring of harmful marine compounds. 

OPEN ACCESS 



Mar. Drugs 2013, 11 4371 

 

 

Keywords: marine invertebrates; omics; bioinformatics; pollution; biomonitoring; 

biotoxins; heavy metals; PAHs 

 

1. Introduction 

Marine invertebrates constitute the largest group of macroscopic species in the sea [1]. Among 

them, bivalve molluscs stand out not only for their fundamental role in the marine ecosystem, but also 

for their commercial value in aquaculture industry [2,3]. Additionally, this group of organisms displays 

key features legitimizing their application as sentinel organisms for the biomonitoring of harmful compounds, 

particularly in coastal and estuarine areas, including: ubiquitous distribution, easy accessibility, filtering 

lifestyle, as well as strong resistance to a wide range of pollutants [4–10]. Bivalves have been traditionally 

tested for biomonitoring purposes [11–13], often following physiological or biochemical approaches. 

Yet, it was not until very recently that integrative omic approaches have been implemented in the study 

of marine bivalves, primarily due to the recent advances in sequencing technologies and the substantial 

reduction in the associated costs. Nonetheless, the characterization of bivalve genomes is still challenging 

given the lack of reference assemblies as well as the presence of specific sequence features such as high 

density of repetitive regions and increased levels of polymorphism [7,14]. Consequently, alternative 

approaches tackling the study of specific genome regions using Next Generation Sequencing (NGS) 

platforms have been implemented, most notably de novo 454-pyrosequencing of transcriptomes [5,15–17]. 

Figure 1. Integrative omic studies constitute a powerful tool in addressing the links 

between environmental conditions, harmful effects and associated responses in marine 

bivalves. Environmental conditions affect different levels, starting from the genome and the 

state of the chromatin (epigenome). Changes on these levels influence gene expression and 

the pool of expressed mRNAs (transcriptome), which in turn has an obvious effect on protein 

synthesis (proteomics). The regulation of all these systems also produces modifications in 

the set of small metabolites produced by an organism (metabolome). Overall, the intricate 

interconnection among the different omes requires a holistic integrative approach in order 

to understand how organisms respond to changes in the surrounding environment. 
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So far, the omic study of bivalves has been mainly focused towards the characterization of genomes, 

transcriptomes and proteomes, although not necessarily in this specific order. In fact, pioneer omic studies 

in bivalves were eminently based on transcriptomes, helping to set up the foundations for subsequent 

proteomic and genomic studies [18–22]. Metabolomic and epigenomic characterization of bivalves, on 

the other hand, still constitute emerging disciplines that would complete the necessary framework for 

integrative approaches (Figure 1). Ongoing interest in omic studies of bivalves is mirrored by recent 

publications of draft and complete genome sequences for two oyster species, the pearl oyster Pinctada 

fucata [14] and the Pacific oyster Crassostrea gigas [7]. In addition, major efforts are being carried out 

in the midst of the current “omics rush” to push bivalve omics forward, as illustrated by the 

characterization of diverse transcriptomes and proteomes in other bivalves [16,23–29]. Within this 

scenario, the present work aims to put together a timely and comprehensive review of the state of  

the art in the omic analysis of bivalve molluscs, with emphasis on currently available web-accessible 

molecular data resources and their potential applications for the biomonitoring of harmful  

marine compounds. 

2. Leading Edge on Bivalve High-Throughput and NGS Data Analysis 

2.1. Bivalve Genomes 

As mentioned earlier, although closely followed by the still gapped genome assembly of P. fucata [14], 

the only bivalve genome currently considered as complete belongs to the Pacific oyster C. gigas [7]. 

Yet, why is there only one single bivalve genome completely sequenced, despite their commercial and 

biologic importance in the “omics” era? It seems that the repetitive organization of the non-coding 

fraction in bivalve genomes, as well as their size, truly represent a challenge for their de novo 

sequencing and for the efficient assembly of these repeated pieces of information. On one hand, the 

estimated C-value of most bivalve genomes ranges between 0.5 and 2.0 pg (C. gigas genome is 

approximately 558 Mb in size) [30], over 10 times the size of the most well studied invertebrate model 

organisms (e.g., Drosophila melanogaster, Caenorhabditis elegans, etc.). On the other hand, it has 

been reported that one single satellite repetitive DNA sequence might comprise 0.63% of the genome 

of the blue mussel Mytilus edulis [31] and that 30% of the genome of the C. gigas is repetitive DNA [7]. 

The complexity of bivalve genomes is mirrored by the efforts carried out in the pearl oyster P. fucata 

genome sequencing project, where a considerable sequencing coverage (~40 fold) was necessary in 

order to produce a draft genome [14]. The development of specific sequencing and assembly 

methodologies, such as those developed during the sequencing of the C. gigas genome on which 

fosmid pooling and hierarchical assembly were used [7], are expected to improve the development of 

new bivalve genome projects. 

2.2. Bivalve Transcriptomes 

Initial transcriptomic studies based on homology cloning in bivalves were progressively 

complemented with the analysis of genes differentially expressed in response to different pollutants 

and pathogens, based on different technologies such as cDNA libraries, Suppression Subtractive 

Hybridization libraries (SSH) and microarrays [5,6,8,9,16,19,20,32–38] (see Section 4 for details). The 
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development of cDNA and SSH libraries has led to a significant increase in the number of Expressed 

Sequence Tags (ESTs) in databases, constituting the basis for DNA microarray technology. 

Microarrays have been primarily used in mussels to study the large-scale transcriptional response to 

different environmental stress factors [13,18,19,34,39,40]. Nowadays, the combination of microarray 

and NGS technologies is significantly speeding up de novo gene discovery and microarray design [41], 

allowing transcriptomic analyses of non-model organisms [42] including bivalves [16,25,29,43,44]. 

Additionally, the RNA-seq approach to transcriptome profiling is becoming an appealing alternative to 

the DNA microarray analysis also in bivalves [45]. RNA-seq provides a far more precise measurement 

of transcript levels than other methods, delivering unbiased and unparalleled gene expression 

information. Transcriptome assembly poses specific challenges of its own given that, unlike genomes, 

the number of sequenced reads pertaining to different transcripts can vary over several orders of 

magnitude due to differences in expression levels [42]. Consequently, sequencing coverage is 

susceptible to be heterogeneous throughout the whole transcriptome (i.e., higher coverage levels of 

highly expressed transcripts) requiring transcript normalization before data analysis. 

2.3. Bivalve Proteomes 

Changes in cell phenotype can be fully appreciated only when transcripts are translated into  

proteins [46]. The field of proteomics has flourished hand in hand with the advancement in techniques 

of protein separation and identification, mainly two-dimensional gel electrophoresis and multidimensional 

Liquid Chromatography combined with Mass Spectrometry (LC-MS) technologies [47]. While gel-based 

techniques display serious limitations referred to proteome coverage, gel-free techniques as LC-MS are 

considered fast and low-cost high-throughput approaches [48]. However, the large-scale application of 

shotgun gel-free proteomic methods in bivalves remains hampered by the relative scarcity of genomic 

data in public repositories, necessary for automated protein identification [4]. So far, the proteomic 

study of bivalves pointed to the identification of biomarkers of aquatic pollution [49–51] and general 

gene/protein expression profile studies [52–54]. In addition, proteome investigation is currently being 

used to study the bivalve response to different sources of environmental stress such as the study of 

proteomic changes in response to ocean acidification [55,56].  

2.4. Bivalve Metabolomics 

Metabolomics is a recently developed omic field focused on the integral study of the metabolic profile 

of a cell or system, especially low molecular-weight metabolites (<1000 Da) regarded as fingerprints of 

specific biological processes. A major advantage of this approach is that it does not make any 

assumptions about the relevance of the different metabolites and does not require previous knowledge 

on the genome of the organisms studied [4]. On the other hand, a major criticism to the application of 

metabolomics in the biomonitoring of toxicity is the difficulty in correlating different sources of 

toxicity with changes in specific metabolites [57]. Among bivalves, the study of the mussel metabolome 

has been used to assess the effect of heavy metal contamination [58,59], to discriminate sex specific 

metabolites and to understand the mode of action of pesticides like atrazine and lindane [60]. Additionally, 

the metabolome of the manila clam R. phillipinarum was studied to evaluate exposure to heavy  

metals [61–63] and benzo(a)pyrene [64]. 
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2.5. Bivalve Epigenomics 

The epigenomic analysis of bivalve genomes seeks a global profiling of epigenetic marks and 

chromatin structure using high-throughput methods [65], constituting a prospective field of great interest 

both in terms of basic and applied research. Besides helping ascertain the evolution of the several layers 

of complexity regulating gene expression during development [66], the characterization of genome-wide 

patterns of chromatin reorganization in response to environmental stress will provide researchers with a 

promising approach to detect and quantify levels of different marine compounds by using bivalves as 

sentinel organisms. Even though these objectives are ambitious, the epigenetic relevance of DNA methylation 

in oysters [67], the characterization of histones and histone variants in several bivalve molluscs [68–71] 

as well as the characterization of their expression profiles and posttranslational modifications in response 

to the marine biotoxin Okadaic Acid (OA) have been reported [5,72]. 

3. Resources for the Study of Bivalve Omic Data 

3.1. General Resources 

During the genomic and post-genomic era, the scientific community has witnessed the swiftest and 

largest expansion of public repositories of molecular data, especially regarding humans and traditional 

model organisms. However, only a small number of genome projects focused on bivalves are currently 

registered at the National Center for Biotechnology Information (NCBI) database (Figure 2), including 

2 freshwater species and 17 marine species [73]. Indeed, all the entries belonging to bivalves registered 

in the NCBI Reference Sequence (RefSeq) Database remain limited to mitochondrial genomes [74]. 

On the contrary, a rich variety of transcriptomic datasets are currently being produced and submitted to 

public repositories (Gene Expression Omnibus, GEO [75]), providing valuable knowledge encompassing 

straightforward environmental applications. 

Figure 2. Number of bioprojects registered at the NCBI database comparing traditional 

model organisms with two upcoming bivalve model organisms (the mussel M. galloprovincialis 

and the oyster C. gigas).  
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Nowadays, the molecular databases supported by NCBI play a leading role given their standardization 

and durability. In addition to the well known Genbank [76] and GEO databases [77,78], the 

blossoming of high-throughput technologies has unfolded new specialized subdivisions such as the 

NCBI Sequence Read Archive (SRA [79]) and the Transcriptome Shotgun Assembly database  

(TSA [80]). In order to submit data to SRA or TSA, a Bioproject must be previously registered along 

with a description of the basic features and global research aim of the datasets, thus facilitating cross 

referencing (Figure 2). A summary of Bioprojects, registered Genome projects and SRA datasets 

currently available on marine bivalves is shown in Table 1. 

Table 1. High-throughput data registered in public repositories of the NCBI. 

Species 
Bioproject 

Genome 
SRA Datasets 

Number Type Total 454 Illumina AB SOLiD 

Alasmidonta varicosa 1 transcriptome/gene expression YES (no data) 1 1 - - 

Arctica islandica 1 genome YES (no data) 12 12 - - 

Argopecten irradians 3 transcriptome/gene expression - 1 1 - - 

Bankia setacea 1 genome YES (no data) 1 1 - - 

Bathymodiolus azoricus 1 transcriptome/gene expression YES (no data) 1 1 - - 

Chlamys farreri 1 transcriptome/gene expression - - - - - 

Chamelea gallina - - - 1 1 - - 

Crassostrea angulata 1 transcriptome/gene expression - - - - - 

Crassostrea gigas 16 
1 genome, 15 transcriptome/gene 

expression 

YES (scaffold or 

contigs status) 
159 2 155 2 

Crassostrea hongkongensis 1 proteome - - - - - 

Crassostrea virginica 3 transcriptome/gene expression - - - - - 

Ennucula tenuis - - - 1 1 - - 

Glossus humanus 1 exome YES (no data) - - - - 

Hyriopsis cumingii 1 transcriptome/gene expression - 1 1 - - 

Laternula elliptica 1 transcriptome/gene expression - 3 3 - - 

Macoma balthica - - - 3 3 - - 

Mercenaria mercenaria 1 transcriptome/gene expression YES (no data) 2 - - 2 

Meretrix meretrix 1 transcriptome/gene expression - 1 1 - - 

Mizuhopecten (Patinopecten) 

yessoensis 
1 transcriptome/gene expression - 2 2 - - 

Mya arenaria 2 transcriptome/gene expression YES (no data) - - - - 

Mytilus californianus 4 transcriptome/gene expression - - - - - 

Mytilus edulis - - - 44 44 - - 

Mytilus galloprovincialis 19 transcriptome/gene expression - 12 6 6 - 

Nodipecten subnodosus - - - 2 2 - - 

Nucula nitidosa - - - 1 1 - - 

Ostrea lurida 2 transcriptome/gene expression YES (no data) 1 - 1 - 

Pinctada fucata 1 transcriptome/gene expression YES (no data) 10 7 3 - 

Pinctada margaritifera 2 transcriptome/gene expression YES (no data) 1 1 - - 

Pinctada maxima 7 transcriptome/gene expression - 1 1 - - 
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Table 1. Cont. 

Pteria penguin 1 transcriptome/gene expression YES (no data) - - - - 

Ruditapes decussatus 3 transcriptome/gene expression - - - - - 

Ruditapes philippinarum 6 transcriptome/gene expression - 28 2 26 - 

Solemya velum - - - 2 1 1 - 

Spisula solidissima 1 genome YES (no data) - - - - 

Tegillarca granosa 1 transcriptome/gene expression - 1 1 - - 

Yoldia limatula - - - 1 1 - - 

Projects are registered in the Genome specific database and become graded by curators  

with status symbols detailing the type and amount of data provided. So far, only C. gigas has acquired 

the status of scaffold while the others are only registered with no data yet submitted (see NCBI 

Genome [73]). Along with genomic data, the C. gigas sequencing project has provided a large number 

of SRA submissions, including RNA-seq data from gene expression experiments under environmental 

stress [7]. Although no genome sequencing data is yet available in mussels, species from the genus 

Mytilus follow in numbers of registered projects and submitted datasets, especially in the case of 

M. galloprovincialis [81]. Gene expression profiling using microarray technologies is often carried out 

in these organisms by means of tailor-made microarray platforms [6,13,18,19,21,23,34,35,39,40,82–89]. 

RNA-Seq expression studies, on the other hand, are still hampered by the lack of reference genomes. 

Overall, oysters, mussels and clams attract most of the scientific attention given their high commercial 

value and their potential applications as sentinel organisms in marine pollution biomonitoring [90]. 

3.2. Specialized Resources 

3.2.1. Databases and Knowledge Repositories 

Although most molecular information related to bivalve molluscs is stored in the repositories 

detailed in the previous section, a number of specialized databases have become publicly available 

during the last years (see Table 2). For instance, the Marine Genomics Project [91] comprises ESTs 

and microarray data from marine organisms in a broad sense, although most recent databases aim to 

extend the molecular knowledge to specific group of species. Within this context, the genome draft of 

the pearl oyster Pinctada fucata (version 1.0) has been made publicly available through a specific 

genome browser [14,92]. Similarly, repositories such as the Mytibase [93] represent useful resources 

for the transcriptomic study of the mussel Mytilus, providing large-scale ESTs with critical relevance 

for developing microarray platforms aimed to the biomonitoring of marine pollution. ESTs have been 

also put together for other bivalve species such as the clams Ruditapes philippinarum in the 

RuphiBase [35] and Chamelea gallina in the ChamaleaBase [27], the mussel Bathymodiolus azoricus 

in the DeepSeaVent database [33], as well as the Pacific oyster C. gigas in the GigasDatabase [94]. 

From a functional perspective, the CHROMEVALOA database [5] constitutes a resource aimed to 

provide a specific platform for the evaluation of OA contamination in the marine environment based 

on the chromatin-associated transcriptome of the mussel Mytilus galloprovincialis (transcripts 

involved in chromatin structure and metabolism, differentially expressed in response to OA). The 

future coordination of the aforementioned resources could constitute a cross-referenced network 
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providing all necessary information about the transcriptional features of the environmentally relevant 

class of Bivalvia. 

Table 2. Summary of the transcriptomic databases specialized in bivalves. 

Database Organism/# Sequences Tissues/URL 

Species-centered 

Mytibase M. galloprovincialis 7112 Digestive gland, gills, hemocytes [95] 

GigasDatabase C. gigas 29745 Digestive gland, gills, gonad, hemocytes, mantle-edge, muscle [96] 

RuphiBase R. philippinarum 32606 Mixed tissues [97] 

ChameleaBase C. gallina 36422 Muscle [98] 

DeepSeaVent B. azoricus 35903 Gills [99] 

Functionally-centered 

Chromevaloa M. galloprovincialis 14408 Digestive gland [100] 

3.2.2. Array Technology 

So far, most gene expression studies carried out on bivalves have relied on microarray technologies 

so far, with RNA-seq projects still scarcely represented. Platforms are usually designed and built 

ad hoc with specific oligo probes of one or more organisms of interest. The mussel M. galloprovincialis 

is the target organism in 5 specific platforms registered in GEO, focused on the transcriptional response 

of mussels exposed to a number of seawater pollutants [19,89] as well as to the biotoxin OA [13] using 

Mytarray 1.0 (accession GPL1799). The upgraded Mytarray 1.1 (accession GPL10269), allows gene 

expression studies during annual cycles and discriminates between sexes [82]. Additionally, the Mussel 

Immunochip (accession GPL10758) and HMS/SomeroLab-Mytilus-105k (accessions GPL9676 and 

GPL11156) have also been used to assess the effects of different environmental conditions such as 

infectious processes [34] or physico-chemical stress [39]. Furthermore, a robust M. galloprovincialis 

microarray is currently being developed to study environmentally relevant biotoxins [101]. Similarly, 

C. gigas has been also the subject of up to 6 specific microarray platforms registered in GEO, 

including 1 with mixed probes from Crassostrea virginica, aimed to assess coastal pollution levels [37]. 

Although the development of specific microarrays is very common now in oysters and clams [35,87], the 

RNA-seq approach is progressively replacing DNA array analysis in gene expression studies, as 

illustrated by the cases of C. gigas [7] and M. galloprovincialis [45]. 

4. Bivalve Omic Approaches for the Biomonitoring of Marine Compounds 

The application of omic approaches based on high-throughput and NGS molecular data constitutes 

a very powerful tool in deciphering the molecular mechanisms underlying the response and adaptation 

of bivalves to environmental changes (Figure 3). Nowadays, the analysis of gene expression profiles is 

helping define new metrics complementing traditional chemical and biomarker measures, redefining 

the surveillance of coastal water pollution. On one hand, SSH and microarray techniques continue to 

provide important information concerning differential expression of specific genes in response to 

different sources of stress in the surrounding environment. On the other hand, high-throughput sequencing 

of transcriptomes (RNA-seq) is progressively adding further depth and new details on bivalve biology. 
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Figure 3. Process flow diagram of a NGS-based transcriptome analysis and potential 

applications for environmental biomonitoring. Specimens are subject to the desired experimental 

challenge and, upon collection, total RNA is extracted and sequenced using the technology 

of choice. Depending on the pre-existing genomic resources available for the organism of 

interest, sequencing reads are then mapped to an annotated reference genome or transcriptome 

to obtain read counts for each gene, and finally converted into digital gene expression data. 

The comparison of the gene expression profiles obtained from treated and control samples 

can lead to biological insights on the transcriptional response to the experimental stimulus, 

to the identification of potential gene expression biomarkers and also allows integrative 

analyses with other omic approaches (i.e., proteomics, metabolomics, etc.). 

 

4.1. Bivalve Transcriptomes as Biomonitoring Tools 

The dynamic transcriptional response to fluctuations in environmental factors has the potential to 

reveal transitory adjustments, irreversible functional deficits and taxon-specific adaptive features of the 

organisms. For instance, the study of transcript signatures has revealed subtle species-specific 

transcriptomic differences between the mussels Mytilus galloprovincialis and M. trossulus [40]. 

Additionally, transcriptomic profiles have also been addressed in the oyster Crassostrea virginica 
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using chemical measures and DNA microarray analyses both on gill and digestive gland samples. In 

this case, progressive computational data testing confirmed the reliability of the DNA microarray 

metrics and provided insights on the mechanisms of responses to temperature and pH in oysters [37]. 

Concurrently, the construction of SSH libraries led to the identification of putative biomarkers involved 

in the response to several stress factors relevant for aquaculture, including high temperature [39,102], 

hypoxia [103] and pathogen infection [104,105]. 

Transcriptomic studies have helped identify specific groups of genes involved in the response and 

adaptation of bivalves to external conditions. This is the case of studies suggesting that genes involved 

in defense and the innate immune response play a pivotal role as determinants of the resistance to 

summer mortality in C. gigas [83,85]. Indeed, sequencing and data mining of ESTs are essential steps 

for the comparative identification of molecules and related pathways of response to specific 

stimuli [32,34,36,86,94] and this task is greatly facilitated by the availability of high throughput 

sequencing technologies yielding unprecedented amounts of sequence data. RNA-seq has also been 

used to identify genes involved in the development of Crassostrea angulata and Meretrix 

meretrix [26,28]. As illustrated, the combination of molecular data with traditional physiological and 

population studies provides a new framework for the management of livestock under naturally- or 

anthropically-driven stress conditions, improving both open water and hatchery aquaculture 

systems [25,27]. 

4.2. Toxin Biomonitoring during Harmful Algae Blooms 

Among marine compounds, Harmful Algae Blooms (HABs) cause deleterious effects not only in 

natural populations of bivalves (and other organisms), but also on human health and economy. So far, 

three different studies using the Mediterranean mussel M. galloprovincialis as model organism have 

tried to tackle the effects of marine biotoxins on bivalves from an omic perspective. In a first study, the 

effects of the accumulation of the biotoxin OA in mussels over a 35 day exposure period were studied 

by using a cDNA microarray, resulting in the identification of several transcripts as candidates of  

OA-stress markers [13]. Although most identified sequences could not be linked to known metabolic 

pathways correlated to OA biotransformation, the up-regulation of several stress-related proteins 

involved in apoptosis, proteolysis and cytoskeleton destabilization, suggested a harmful effect of OA 

in mussels. In a second study, the characterization of the chromatin-associated transcriptome of 

mussels exposed to OA was carried out, now available in the CHROMEVALOA database [5]. This 

work lays the foundations for the study of chromatin-related transcriptome changes potentially 

involved in the response to OA. Indeed, this approach permitted the identification of a number of 

genes whose expression was significantly influenced by OA, revealing potential sensitive biomarkers 

for OA genotoxicity tests. A third study, currently in progress, investigates the molecular mechanisms 

underlying the response to the accumulation of paralytic shellfish toxins produced by the dinoflagellate 

Alexandrium minutum in the digestive gland of mussels over a period of 5 days. Preliminary results 

suggest that even though negligible effects on gene expression seem to be produced by biotoxin 

contamination, a few potential biomarkers of contamination were identified [106]. 
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4.3. Evaluation of the Harmful Effects of Anthropic Pollutants 

Compounds present in the sea as a direct consequence of human activities still represent an issue of 

great concern, especially in heavily anthropized coastal regions. These compounds include pesticides 

and drugs, polycyclic aromatic compounds, heavy metals and many other chemicals resulting from 

industrial and urban settlements, conveyed in wastewaters and rivers and finally entering the oceans. 

Since the molecular effects of most chemical compounds on marine organisms and communities are 

still poorly understood, the development of studies based on omic approaches could improve the 

evaluation of their impact and provide a more robust basis for biomonitoring programs. With this in 

mind, recent studies using SSH libraries have identified potential biomarkers of exposure to emerging 

PAHs in the digestive gland of the mussel M. edulis, namely the carcinogenic compounds styrene [107] 

and benzo[a]pyrene [21]. Additionally, the still poorly understood adverse effects of diesel fuel have 

been addressed in Crassostrea brasiliana [9] whereas the generation of SSH libraries in bivalves has 

clarified the molecular effects of other anthropic pollutants such as agricultural pesticides [8,22] or 

cadmium from industrial or urban settlements wastewaters [20]. Similarly, microarray technologies 

have been used to investigate the effects of exposure to copper and organophosphate pesticides in  

M. galloprovincialis (BioProject PRJNA178507), revealing a interference of the pesticide Chloropyrifos 

with natural estrogens such as 17β-estradiol [20]. Interestingly, the same microarray platform used in 

studies of OA exposure [13] has also been applied to evaluate the synergistic effects of pesticide and 

heavy metal exposure in M. galloprovincialis [108]. 

Other examples of transcriptomic approaches to the study of anthropic compounds include 

microarray-based studies of Tributyltin, a chemical biocide used in marine antifouling paints that, in 

addition to causing shell abnormalities, also affects biomineralization pathways in the oyster Pinctada 

maxima (BioProject PRJNA114601). Similarly, the expression profile of the digestive gland of the manila 

clam Ruditapes philippinarum was studied by using an Agilent Oligo Microarray platform (BioProject 

PRJNA135933) during four seasons in four different areas of the Venice Lagoon. Finally, pharmaceuticals 

also constitute a new emerging class of environmental contaminants continuously released in aquatic 

environments. Among them, the effect of exposure to ibuprofen has been already tested on R. philippinarum 

using microarrays, revealing an alteration of several molecular pathways, including arachidonic acid 

metabolism, apoptosis, peroxisomal proliferator-activated receptors, and nuclear factor-kappa B, helping 

elucidate the putative mechanisms of action of ibuprofen in non-model species [6]. 

4.4. Proteomic Biomonitoring of Harmful Marine Compounds 

Proteomic approaches are a valuable complement of transcriptomic studies in bivalves and can support 

the identification of new biomarkers of xenobiotic toxicity [4]. For instance, a consistent alteration of 

13 proteins was found along a metal contamination gradient in Crassostrea hongkongensis, supporting 

their potential application as diagnostic tools for the assessment of metal pollution in environmental 

monitoring programs [109]. Moreover, putative toxicity biomarkers (including stress-related proteins 

and novel proteins families) for emerging pollutants, ionic Ag and Ag nanoparticles were also recently 

identified in M. galloprovincialis [110]. The proteomic approach was also validated in studies 

investigating the response to salinity stress, climate changes and accumulation of toxins of algal and 
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cyanobacterial origin in different Mytilus species [111–114] as well as the response to heat stress in the 

salt marsh mussel Geukensia demissa [115]. Overall, the synergistic combination of different omic 

approaches has been decisive in elucidating the complex mechanisms underlying the adaptive response 

of marine bivalves to environmental changes. The results obtained so far often highlight interesting and 

surprising evidence that could not have been detected by common research approaches without  

time-consuming, complicated and expensive assays. 

5. Conclusions 

The great relevance of marine invertebrates makes the lack of bivalve model organisms puzzling. 

Still, the information reviewed throughout this work supports two bivalve molluscs, the Pacific oyster 

and the blue mussel, as upcoming model organisms. This notion is sustained by progressive omic 

characterizations of these organisms during the last decade, unleashing many potential applications 

most notably for pollution biomonitoring. Yet, the implications of bivalve omics for other research 

fields are still unexplored. Given the high bioaccumulation rates associated with the filtering capacity 

of bivalves and their relative tolerance to xenobiotics, it would not be surprising if new useful marine 

compounds, proteins or whole metabolic pathways could be discovered as a result of the omic analysis 

of these organisms. Although the possibilities promise to be endless, the development of further applications 

is still hampered by the early stage of development of omic technologies and associated computational 

methods of data analysis in bivalve molluscs, definitely far behind traditional model organisms. In 

such a scenario, and given the nature of the omic data, the advance in the integrative knowledge of 

bivalves will require coordination and transfer of knowledge across researchers sharing complementary 

goals. Indeed, the release of web accessible databases containing processed and reviewed results  

(not simply raw data) seems the best way to consolidate the omic characterization of bivalve molluscs. 

Altogether, great expectations are placed on future bivalve omics as it pertains to life sciences, 

environmental sciences and aquaculture livestock managing. Nonetheless, there is undoubtedly a long 

road ahead to obtain a truly holistic understanding of the basic features displayed by the different 

bivalve omes. 

Acknowledgments 

The present work was supported by Grants from the Spanish Ministry of Economy and Competitivity 

(CGL2011-24812 & Ramon y Cajal Subprogramme) and by the Italian Ministry of Education, University 

and Research (PRIN 2010-11, 20109XZEPR). Additional support was obtained from the Xunta de 

Galicia (10-PXIB-103-077-PR) and from a Starting Grant from Florida International University.  

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Ruppert, E.E.; Fox, R.S.; Barnes, R.D. Invertebrate Zoology: A Functional Evolutionary 

Approach, 7th ed.; Cengage Learning: Stamford, CT, USA, 2004. 



Mar. Drugs 2013, 11 4382 

 

 

2. Gosling, E.M. Bivalve Molluscs: Biology, Ecology and Culture; Oxford Fishing New Books, 

Blackwell Science: Oxford, UK, 2003. 

3. Newell, R. Ecosystem influences of natural and cultivated populations of suspension-feeding 

bivalve molluscs: A review. J. Shellfish Res. 2004, 23, 51–61. 

4. Campos, A.; Tedesco, S.; Vasconcelos, V.; Cristobal, S. Proteomic research in bivalves: Towards 

the identification of molecular markers of aquatic pollution. J. Proteomics 2012, 75, 4346–4359. 

5. Suarez-Ulloa, V.; Fernandez-Tajes, J.; Aguiar-Pulido, V.; Rivera-Casas, C.; Gonzalez-Romero, R.; 

Ausio, J.; Mendez, J.; Dorado, J.; Eirin-Lopez, J.M. The CHROMEVALOA database: A 

resource for the evaluation of okadaic acid contamination in the marine environment based on 

the chromatin-associated transcriptome of the mussel Mytilus galloprovincialis. Mar. Drugs 

2013, 11, 830–841. 

6. Milan, M.; Pauletto, M.; Patarnello, T.; Bargelloni, L.; Marin, M.G.; Matozzo, V. Gene transcription 

and biomarker responses in the clam Ruditapes philippinarum after exposure to ibuprofen. 

Aquat. Toxicol. 2013, 126, 17–29. 

7. Zhang, G.; Fang, X.; Guo, X.; Li, L.; Luo, R.; Xu, F.; Yang, P.; Zhang, L.; Wang, X.; Qi, H.; et al. 

The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 

490, 49–54. 

8. Collin, H.; Meistertzheim, A.L.; David, E.; Moraga, D.; Boutet, I. Response of the Pacific oyster 

Crassostrea gigas, Thunberg 1793, to pesticide exposure under experimental conditions. J. Exp. 

Biol. 2010, 213, 4010–4017. 

9. Luchmann, K.H.; Mattos, J.J.; Siebert, M.N.; Dorrington, T.S.; Toledo-Silva, G.; Stoco, P.H.; 

Grisard, E.C.; Bainy, A.C. Suppressive subtractive hybridization libraries prepared from the 

digestive gland of the oyster Crassostrea brasiliana exposed to a diesel fuel water-accommodated 

fraction. Environ. Toxicol. Chem. 2012, 31, 1249–1253. 

10. Fernandez-Tajes, J.; Arias-Perez, A.; Fernandez-Moreno, M.; Mendez, J. Sharp decrease of genetic 

variation in two Spanish localities of razor clam Ensis siliqua: Natural fluctuation or Prestige oil 

spill effects? Ecotoxicology 2012, 21, 225–233. 

11. Florez-Barros, F.; Prado-Alvarez, M.; Mendez, J.; Fernandez-Tajes, J. Evaluation of genotoxicity 

in gills and hemolymph of clam Ruditapes decussatus fed with the toxic dinoflagellate 

Prorocentrum lima. J. Toxicol. Environ. Health A 2011, 74, 971–979. 

12. Wells, P.G.; Depledge, M.H.; Butler, J.N.; Manock, J.J.; Knap, A.H. Rapid toxicity assessment 

and biomonitoring of marine contaminants—exploiting the potential of rapid biomarker assays 

and microscale toxicity tests. Mar. Pollut. Bull. 2001, 42, 799–804. 

13. Manfrin, C.; Dreos, R.; Battistella, S.; Beran, A.; Gerdol, M.; Varotto, L.; Lanfranchi, G.; Venier, P.; 

Pallavicini, A. Mediterranean mussel gene expression profile induced by okadaic acid exposure. 

Environ. Sci. Technol. 2010, 44, 8276–8283. 

14. Takeuchi, T.; Kawashima, T.; Koyanagi, R.; Gyoja, F.; Tanaka, M.; Ikuta, T.; Shoguchi, E.; 

Fujiwara, M.; Shinzato, C.; Hisata, K.; et al. Draft genome of the pearl oyster Pinctada fucata: A 

platform for understanding bivalve biology. DNA Res. 2012, 19, 117–130. 

15. Craft, J.A.; Gilbert, J.A.; Temperton, B.; Dempsey, K.E.; Ashelford, K.; Tiwari, B.; Hutchinson, 

T.H.; Chipman, J.K. Pyrosequencing of Mytilus galloprovincialis cDNAs: Tissue-specific 

expression patterns. PLoS One 2010, 5, e8875. 



Mar. Drugs 2013, 11 4383 

 

 

16. Moreira, R.; Balseiro, P.; Planas, J.V.; Fuste, B.; Beltran, S.; Novoa, B.; Figueras, A. 

Transcriptomics of in vitro immune-stimulated hemocytes from the Manila clam Ruditapes 

philippinarum using high-throughput sequencing. PLoS One 2012, 7, e35009. 

17. Rosani, U.; Varotto, L.; Rossi, A.; Roch, P.; Novoa, B.; Figueras, A.; Pallavicini, A.; Venier, P. 

Massively parallel amplicon sequencing reveals isotype-specific variability of antimicrobial 

peptide transcripts in Mytilus galloprovincialis. PLoS One 2011, 6, e26680. 

18. Dondero, F.; Piacentini, L.; Marsano, F.; Rebelo, M.; Vergani, L.; Venier, P.; Viarengo, A. Gene 

transcription profiling in pollutant exposed mussels (Mytilus spp.) using a new low-density 

oligonucleotide microarray. Gene 2006, 376, 24–36. 

19. Venier, P.; de Pitta, C.; Pallavicini, A.; Marsano, F.; Varotto, L.; Romualdi, C.; Dondero, F.; 

Viarengo, A.; Lanfranchi, G. Development of mussel mRNA profiling: Can gene expression 

trends reveal coastal water pollution? Mutat. Res. 2006, 602, 121–134. 

20. Zapata, M.; Tanguy, A.; David, E.; Moraga, D.; Riquelme, C. Transcriptomic response of 

Argopecten purpuratus post-larvae to copper exposure under experimental conditions. Gene 

2009, 442, 37–46. 

21. Brown, M.; Davies, I.M.; Moffat, C.F.; Craft, J.A. Application of SSH and a macroarray to 

investigate altered gene expression in Mytilus edulis in response to exposure to benzo[a]pyrene. 

Mar. Environ. Res. 2006, 62, S128–S135. 

22. Tanguy, A.; Boutet, I.; Laroche, J.; Moraga, D. Molecular identification and expression study of 

differentially regulated genes in the Pacific oyster Crassostrea gigas in response to pesticide 

exposure. FEBS J. 2005, 272, 390–403. 

23. Navarro, A.; Campos, B.; Barata, C.; Pina, B. Transcriptomic seasonal variations in a natural 

population of zebra mussel (Dreissena polymorpha). Sci. Total Environ. 2013, 454–455, 482–489. 

24. Meng, J.; Zhu, Q.; Zhang, L.; Li, C.; Li, L.; She, Z.; Huang, B.; Zhang, G. Genome and 

transcriptome analyses provide insight into the euryhaline adaptation mechanism of Crassostrea 

gigas. PLoS One 2013, 8, e58563. 

25. Pante, E.; Rohfritsch, A.; Becquet, V.; Belkhir, K.; Bierne, N.; Garcia, P. SNP detection from  

de novo transcriptome sequencing in the bivalve Macoma balthica: Marker development for 

evolutionary studies. PLoS One 2012, 7, e52302. 

26. Huan, P.; Wang, H.; Liu, B. Transcriptomic analysis of the clam Meretrix meretrix on different 

larval stages. Mar. Biotechnol. (N.Y.) 2012, 14, 69–78. 

27. Coppe, A.; Bortoluzzi, S.; Murari, G.; Marino, I.A.; Zane, L.; Papetti, C. Sequencing and 

characterization of striped venus transcriptome expand resources for clam fishery genetics.  

PLoS One 2012, 7, e44185. 

28. Qin, J.; Huang, Z.; Chen, J.; Zou, Q.; You, W.; Ke, C. Sequencing and de novo analysis of 

Crassostrea angulata (Fujian oyster) from 8 different developing phases using 454 GSFlx.  

PLoS One 2012, 7, e43653. 

29. Shi, Y.; Yu, C.; Gu, Z.; Zhan, X.; Wang, Y.; Wang, A. Characterization of the pearl oyster 

(Pinctada martensii) mantle transcriptome unravels biomineralization genes. Mar. Biotechnol. 

(N.Y.) 2013, 15, 175–187. 

30. Rodríguez-Juíz, A.M.; Torrado, M.; Méndez, J. Genome-size variation in bivalve molluscs 

determined by flow cytometry. Mar. Biol. 1996, 126, 489–497. 



Mar. Drugs 2013, 11 4384 

 

 

31. Ruiz-Lara, S.; Prats, E.; Sainz, J.; Cornudella, L. Cloning and characterization of a highly 

conserved satellite DNA from the mollusc Mytilus edulis. Gene 1992, 117, 237–242. 

32. Philipp, E.E.; Kraemer, L.; Melzner, F.; Poustka, A.J.; Thieme, S.; Findeisen, U.; Schreiber, S.; 

Rosenstiel, P. Massively parallel RNA sequencing identifies a complex immune gene repertoire 

in the lophotrochozoan Mytilus edulis. PLoS One 2012, 7, e33091. 

33. Egas, C.; Pinheiro, M.; Gomes, P.; Barroso, C.; Bettencourt, R. The transcriptome of Bathymodiolus 

azoricus gill reveals expression of genes from endosymbionts and free-living deep-sea bacteria. 

Mar. Drugs 2012, 10, 1765–1783. 

34. Venier, P.; Varotto, L.; Rosani, U.; Millino, C.; Celegato, B.; Bernante, F.; Lanfranchi, G.; 

Novoa, B.; Roch, P.; Figueras, A.; et al. Insights into the innate immunity of the Mediterranean 

mussel Mytilus galloprovincialis. BMC Genomics 2011, 12, 69. 

35. Milan, M.; Coppe, A.; Reinhardt, R.; Cancela, L.M.; Leite, R.B.; Saavedra, C.; Ciofi, C.; 

Chelazzi, G.; Patarnello, T.; Bortoluzzi, S.; et al. Transcriptome sequencing and microarray 

development for the Manila clam, Ruditapes philippinarum: Genomic tools for environmental 

monitoring. BMC Genomics 2011, 12, 234. 

36. De Lorgeril, J.; Zenagui, R.; Rosa, R.D.; Piquemal, D.; Bachere, E. Whole transcriptome profiling 

of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital 

gene expression analysis. PLoS One 2011, 6, e23142. 

37. Chapman, R.W.; Mancia, A.; Beal, M.; Veloso, A.; Rathburn, C.; Blair, A.; Holland, A.F.;  

Warr, G.W.; Didinato, G.; Sokolova, I.M.; et al. The transcriptomic responses of the eastern oyster, 

Crassostrea virginica, to environmental conditions. Mol. Ecol. 2011, 20, 1431–1449. 

38. Canesi, L.; Negri, A.; Barmo, C.; Banni, M.; Gallo, G.; Viarengo, A.; Dondero, F. The 

organophosphate Chlorpyrifos interferes with the responses to 17beta-estradiol in the digestive 

gland of the marine mussel Mytilus galloprovincialis. PLoS One 2011, 6, e19803. 

39. Lockwood, B.L.; Sanders, J.G.; Somero, G.N. Transcriptomic responses to heat stress in invasive 

and native blue mussels (genus Mytilus): Molecular correlates of invasive success. J. Exp. Biol. 

2010, 213, 3548–3558. 

40. Lockwood, B.L.; Somero, G.N. Transcriptomic responses to salinity stress in invasive and native 

blue mussels (genus Mytilus). Mol. Ecol. 2011, 20, 517–529. 

41. Shendure, J. The beginning of the end for microarrays? Nat. Methods 2008, 5, 585–587. 

42. Francis, W.R.; Christianson, L.M.; Kiko, R.; Powers, M.L.; Shaner, N.C.; Haddock, S.H. A 

comparison across non-model animals suggests an optimal sequencing depth for de novo 

transcriptome assembly. BMC Genomics 2013, 14, 167; doi:10.1186/1471-2164-14-167. 

43. Ghiselli, F.; Milani, L.; Chang, P.L.; Hedgecock, D.; Davis, J.P.; Nuzhdin, S.V.; Passamonti, M. 

De novo assembly of the Manila clam Ruditapes philippinarum transcriptome provides new 

insights into expression bias, mitochondrial doubly uniparental inheritance and sex 

determination. Mol. Biol. Evol. 2012, 29, 771–786. 

44. Yue, X.; Wang, H.; Huang, X.; Wang, C.; Chai, X.; Liu, B. Single nucleotide polymorphisms in 

i-type lysozyme gene and their correlation with vibrio-resistance and growth of clam Meretrix 

meretrix based on the selected resistance stocks. Fish. Shellfish Immunol. 2012, 33, 559–568. 



Mar. Drugs 2013, 11 4385 

 

 

45. Gerdol, M.; De Moro, G.; Manfrin, C.; Venier, P.; Pallavicini, A. Big defensins and mytimacins, 

new AMP families of the Mediterranean mussel Mytilus galloprovincialis. Dev. Comp. Immunol. 

2012, 36, 390–399. 

46. Feder, M.E.; Walser, J.C. The biological limitations of transcriptomics in elucidating stress and 

stress responses. J. Evol. Biol. 2005, 18, 901–910. 

47. Dowd, W.W. Challenges for biological interpretation of environmental proteomics data in  

non-model organisms. Integr. Comp. Biol. 2012, 52, 705–720. 

48. Lambert, J.P.; Ethier, M.; Smith, J.C.; Figeys, D. Proteomics: From gel based to gel free.  

Anal. Chem. 2005, 77, 3771–3787. 

49. Shepard, J.L.; Bradley, B.P. Protein expression signatures and lysosomal stability in Mytilus 

edulis exposed to graded copper concentrations. Mar. Environ. Res. 2000, 50, 457–463. 

50. Leung, P.T.; Wang, Y.; Mak, S.S.; Ng, W.C.; Leung, K.M. Differential proteomic responses in 

hepatopancreas and adductor muscles of the green-lipped mussel Perna viridis to stresses induced 

by cadmium and hydrogen peroxide. Aquat. Toxicol. 2011, 105, 49–61. 

51. Apraiz, I.; Mi, J.; Cristobal, S. Identification of proteomic signatures of exposure to marine 

pollutants in mussels (Mytilus edulis). Mol. Cell. Proteomics 2006, 5, 1274–1285. 

52. Kingtong, S.; Kellner, K.; Bernay, B.; Goux, D.; Sourdaine, P.; Berthelin, C.H. Proteomic 

identification of protein associated to mature spermatozoa in the Pacific oyster Crassostrea 

gigas. J. Proteomics 2013, 82, 81–91. 

53. Corporeau, C.; Vanderplancke, G.; Boulais, M.; Suquet, M.; Quere, C.; Boudry, P.; Huvet, A.; 

Madec, S. Proteomic identification of quality factors for oocytes in the Pacific oyster Crassostrea 

gigas. J. Proteomics 2012, 75, 5554–5563. 

54. López, J.L.; Mosquera, E.; Fuentes, J.; Marina, A.; Vázquez, J.; Álvarez, G. Two-dimensional 

gel electrophoresis of Mytilus galloprovincialis: differences in protein expression between 

intertidal and cultured mussels. Mar. Ecol. Progr. Ser. 2001, 224, 149–156. 

55. Tomanek, L.; Zuzow, M.J. The proteomic response of the mussel congeners Mytilus galloprovincialis 

and M. trossulus to acute heat stress: Implications for thermal tolerance limits and metabolic 

costs of thermal stress. J. Exp. Biol. 2010, 213, 3559–3574. 

56. Tomanek, L.; Zuzow, M.J.; Ivanina, A.V.; Beniash, E.; Sokolova, I.M. Proteomic response to 

elevated PCO2 level in eastern oysters, Crassostrea virginica: Evidence for oxidative stress.  

J. Exp. Biol. 2011, 214, 1836–1844. 

57. Robertson, D.G.; Watkins, P.B.; Reily, M.D. Metabolomics in toxicology: Preclinical and 

clinical applications. Toxicol. Sci. 2005, 120, S146–S170. 

58. Kwon, Y.K.; Jung, Y.S.; Park, J.C.; Seo, J.; Choi, M.S.; Hwang, G.S. Characterizing the effect of 

heavy metal contamination on marine mussels using metabolomics. Mar. Pollut. Bull. 2012, 64, 

1874–1879. 

59. Wu, H.; Wang, W.X. Tissue-specific toxicological effects of cadmium in green mussels (Perna 

viridis): Nuclear magnetic resonance-based metabolomics study. Environ. Toxicol. Chem. 2010, 

30, 806–812. 

60. Tuffnail, W.; Mills, G.A.; Cary, P.; Greenwood, R. An environmental H-1 NMR metabolomic 

study of the exposure of the marine mussel Mytilus edulis to atrazine, lindane, hypoxia and 

starvation. Metabolomics 2009, 5, 33–43. 



Mar. Drugs 2013, 11 4386 

 

 

61. Liu, X.; Zhang, L.; You, L.; Yu, J.; Zhao, J.; Li, L.; Wang, Q.; Li, F.; Li, C.; Liu, D.; et al. 

Differential toxicological effects induced by mercury in gills from three pedigrees of Manila 

clam Ruditapes philippinarum by NMR-based metabolomics. Ecotoxicology 2010, 20, 177–186. 

62. Wu, H.; Liu, X.; Zhao, J.; Yu, J. NMR-based metabolomic investigations on the differential 

responses in adductor muscles from two pedigrees of Manila clam Ruditapes philippinarum to 

Cadmium and Zinc. Mar. Drugs 2011, 9, 1566–1579. 

63. Zhang, L.; Liu, X.; You, L.; Zhou, D.; Wu, H.; Li, L.; Zhao, J.; Feng, J.; Yu, J. Metabolic 

responses in gills of Manila clam Ruditapes philippinarum exposed to copper using NMR-based 

metabolomics. Mar. Environ. Res. 2011, 72, 33–39. 

64. Zhang, L.; Liu, X.; You, L.; Zhou, D.; Wang, Q.; Li, F.; Cong, M.; Li, L.; Zhao, J.; Liu, D.; et al. 

Benzo(a)pyrene-induced metabolic responses in Manila clam Ruditapes philippinarum by proton 

nuclear magnetic resonance ((1)H NMR) based metabolomics. Environ. Toxicol. Pharmacol. 

2011, 32, 218–225. 

65. Metzker, M.L. Sequencing technologies—the next generation. Nat. Rev. Genet. 2010, 11, 31–46. 

66. Klironomos, F.D.; Berg, J.; Collins, S. How epigenetic mutations can affect genetic evolution: 

Model and mechanism. Bioessays 2013, 35, 571–578. 

67. Gavery, M.R.; Roberts, S.B. DNA methylation patterns provide insight into epigenetic regulation 

in the Pacific oyster (Crassostrea gigas). BMC Genomics 2010, 11, 483. 

68. Eirín-López, J.M.; Ruiz, M.F.; González-Tizón, A.M.; Martínez, A.; Sánchez, L.; Méndez, J. 

Molecular evolutionary characterization of the mussel Mytilus histone multigene family: First 

record of a tandemly repeated unit of five histone genes containing an H1 subtype with “orphon” 

features. J. Mol. Evol. 2004, 58, 131–144. 

69. González-Romero, R.; Ausió, J.; Méndez, J.; Eirín-López, J.M. Early evolution of histone genes: 

Prevalence of an “orphon” H1 lineage in protostomes and birth-and-death process in the H2A 

family. J. Mol. Evol. 2008, 66, 505–518. 

70. González-Romero, R.; Ausió, J.; Méndez, J.; Eirín-López, J.M. Histone genes of the razor clam 

Solen marginatus unveil new aspects of linker histone evolution in protostomes. Genome 2009, 

52, 597–607. 

71. González-Romero, R.; Rivera-Casas, C.; Frehlick, L.J.; Méndez, J.; Ausió, J.; Eirín-López, J.M. 

Histone H2A (H2A.X and H2A.Z) variants in molluscs: Molecular characterization and potential 

implications for chromatin dynamics. PLoS One 2012, 7, e30006. 

72. Gonzalez-Romero, R.; Rivera-Casas, C.; Fernandez-Tajes, J.; Ausio, J.; Méndez, J.;  

Eirín-López, J.M. Chromatin specialization in bivalve molluscs: A leap forward for the 

evaluation of okadaic acid genotoxicity in the marine environment. Comp. Biochem. Physiol. C 

Toxicol. Pharmacol. 2012, 155, 175–181. 

73. NCBI Genome. Available online: http://www.ncbi.nlm.nih.gov/genome/ (accessed on  

3 March 2013). 

74. RefSeq. Available online: http://www.ncbi.nlm.nih.gov/refseq/ (accessed on 3 March 2013).  

75. Gene Expression Omnibus. Available online: http://www.ncbi.nlm.nih.gov/geo/ (accessed on  

4 March 2013). 

76. Genbank. Available online: http://www.ncbi.nlm.nih.gov/genbank/ (accessed on 3 March 2013). 



Mar. Drugs 2013, 11 4387 

 

 

77. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, 

K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; et al. NCBI GEO: archive for 

functional genomics data sets-update. Nucleic Acids Res. 2013, 41, D991–D995. 

78. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and 

hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. 

79. SRA. Available online: http://www.ncbi.nlm.nih.gov/sra/ (accessed on 6 March 2013). 

80. TSA. Available online: http://www.ncbi.nlm.nih.gov/genbank/tsa/ (accessed on 6 March 2013). 

81. Murgarella, M.; Novoa, B.; Figueras, A.; Posada, D.; Canchaya, C. In Proceedings of the 

International Society of Fire Service Instructors (ISFSI), First Insights into the Genome of 

Mytilus Galloprovincialis: De Novo Sequencing of a Non-Model Marine Organism, Vigo, Spain,  

25–28 June 2013. 

82. Banni, M.; Negri, A.; Mignone, F.; Boussetta, H.; Viarengo, A.; Dondero, F. Gene expression 

rhythms in the mussel Mytilus galloprovincialis (Lam.) across an annual cycle. PLoS One 2011, 

6, e18904. 

83. Chaney, M.L.; Gracey, A.Y. Mass mortality in Pacific oysters is associated with a specific gene 

expression signature. Mol. Ecol. 2011, 20, 2942–2954. 

84. Dheilly, N.M.; Lelong, C.; Huvet, A.; Favrel, P. Development of a Pacific oyster (Crassostrea 

gigas) 31,918-feature microarray: Identification of reference genes and tissue-enriched expression 

patterns. BMC Genomics 2011, 12, 468. 

85. Fleury, E.; Huvet, A. Microarray analysis highlights immune response of pacific oysters as a 

determinant of resistance to summer mortality. Mar. Biotechnol. (N.Y.) 2012, 14, 203–217. 

86. Fleury, E.; Moal, J.; Boulo, V.; Daniel, J.Y.; Mazurais, D.; Henaut, A.; Corporeau, C.; Boudry, P.; 

Favrel, P.; Huvet, A. Microarray-based identification of gonad transcripts differentially 

expressed between lines of Pacific oyster selected to be resistant or susceptible to summer 

mortality. Mar. Biotechnol. (N.Y.) 2010, 12, 326–339. 

87. Gardner, L.D.; Mills, D.; Wiegand, A.; Leavesley, D.; Elizur, A. Spatial analysis of biomineralization 

associated gene expression from the mantle organ of the pearl oyster Pinctada maxima. BMC 

Genomics 2011, 12, 455. 

88. Place, S.P.; Menge, B.A.; Hofmann, G.E. Transcriptome profiles link environmental variation 

and physiological response of Mytilus californianus between Pacific tides. Funct. Ecol. 2012, 26, 

144–155. 

89. Varotto, L.; Domeneghetti, S.; Rosani, U.; Manfrin, C.; Cajaraville, M.P.; Raccanelli, S.; 

Pallavicini, A.; Venier, P. DNA damage and transcriptional changes in the gills of Mytilus 

galloprovincialis exposed to nanomolar doses of combined metal salts (Cd, Cu, Hg). PLoS One 

2013, 8, e54602. 

90. Kennish, M.J. Practical Handbook of Estuarine and Marine Pollution; CRC Press: Boca Raton, 

FL, USA, 1996; p. 544. 

91. McKillen, D.J.; Chen, Y.A.; Chen, C.; Jenny, M.J.; Trent, H.F., III; Robalino, J.; McLean, D.C., Jr.; 

Gross, P.S.; Chapman, R.W.; Warr, G.W.; et al. Marine genomics: A clearing-house for genomic 

and transcriptomic data of marine organisms. BMC Genomics 2005, 6, 34. 

92. OIST Marine Genomics Unit. Available online: http://marinegenomics.oist.jp/ (accessed on  

27 February 2013).  



Mar. Drugs 2013, 11 4388 

 

 

93. Venier, P.; de Pitta, C.; Bernante, F.; Varotto, L.; de Nardi, B.; Bovo, G.; Roch, P.; Novoa, B.; 

Figueras, A.; Pallavicini, A.; et al. MytiBase: A knowledgebase of mussel (M. galloprovincialis) 

transcribed sequences. BMC Genomics 2009, 10, 72. 

94. Fleury, E.; Huvet, A.; Lelong, C.; de Lorgeril, J.; Boulo, V.; Gueguen, Y.; Bachere, E.; Tanguy, A.; 

Moraga, D.; Fabioux, C.; et al. Generation and analysis of a 29,745 unique Expressed Sequence 

Tags from the Pacific oyster (Crassostrea gigas) assembled into a publicly accessible database: 

The GigasDatabase. BMC Genomics 2009, 10, 341. 

95. Mytibase. Available online: http://mussel.cribi.unipd.it (accessed on 27 February 2013). 

96. Public Sigenae Contig Browser. Available online: http://public-contigbrowser.sigenae.org:9090/ 

Crassostrea_gigas/index.html (accessed on 27 February 2013). 

97. Ruphibase. Available online: http://compgen.bio.unipd.it/ruphibase (accessed on 28 February 2013). 

98. Chameleabase. Available online: http://compgen.bio.unipd.it/chameleabase (accessed on  

27 February 2013). 

99. Deep Sea Vent. Bathymodiolus Azoricus. Available online: http://transcriptomics.biocant.pt: 

8080/deepSeaVent (accessed on 25 February 2013). 

100. CHROMEVALOAdb. Available online: http://chromevaloa.com (accessed on 28 February 2013). 

101. Suárez-Ulloa, V.; Fernández-Tajes, J.; Eirín-López, J.M. Florida International University, 

Miami, FL, USA. Unpublished work, 2013.  

102. Meistertzheim, A.L.; Tanguy, A.; Moraga, D.; Thebault, M.T. Identification of differentially 

expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress. 

FEBS J. 2007, 274, 6392–402. 

103. David, E.; Tanguy, A.; Pichavant, K.; Moraga, D. Response of the Pacific oyster Crassostrea 

gigas to hypoxia exposure under experimental conditions. FEBS J. 2005, 272, 5635–5652. 

104. Araya, M.T.; Markham, F.; Mateo, D.R.; McKenna, P.; Johnson, G.R.; Berthe, F.C.; Siah, A. 

Identification and expression of immune-related genes in hemocytes of soft-shell clams, Mya 

arenaria, challenged with Vibrio splendidus. Fish. Shellfish Immunol. 2010, 29, 557–564. 

105. Morga, B.; Renault, T.; Faury, N.; Chollet, B.; Arzul, I. Cellular and molecular responses of 

haemocytes from Ostrea edulis during in vitro infection by the parasite Bonamia ostreae. Int. J. 

Parasitol. 2011, 41, 755–764. 

106. Gerdol, M. University of Trieste, Trieste, Italy. Unpublished work, 2013. 

107. Diaz de Cerio, O.; Hands, E.; Humble, J.; Cajaraville, M.P.; Craft, J.A.; Cancio, I. Construction 

and characterization of a forward subtracted library of blue mussels Mytilus edulis for the 

identification of gene transcription signatures and biomarkers of styrene exposure. Mar. Pollut. 

Bull. 2013, 71, 230–239. 

108. Dondero, F.; Banni, M.; Negri, A.; Boatti, L.; Dagnino, A.; Viarengo, A. Interactions of a 

pesticide/heavy metal mixture in marine bivalves: A transcriptomic assessment. BMC Genomics 

2011, 12, 195. 

109. Liu, F.; Wang, W.X. Proteome pattern in oysters as a diagnostic tool for metal pollution.  

J. Hazard. Mater. 2012, 239–240, 241–248. 

110. Gomes, T.; Pereira, C.G.; Cardoso, C.; Bebianno, M.J. Differential protein expression in mussels 

Mytilus galloprovincialis exposed to nano and ionic Ag. Aquat. Toxicol. 2013, 136–137, 79–90. 



Mar. Drugs 2013, 11 4389 

 

 

111. Tomanek, L. Environmental proteomics of the mussel Mytilus: Implications for tolerance to 

stress and change in limits of biogeographic ranges in response to climate change. Integr. Comp. 

Biol. 2012, 52, 648–664. 

112. Puerto, M.; Campos, A.; Prieto, A.; Camean, A.; de Almeida, A.M.; Coelho, A.V.; Vasconcelos, 

V. Differential protein expression in two bivalve species; Mytilus galloprovincialis and 

Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells. Aquat. Toxicol. 2011, 101, 

109–116. 

113. Nzoughet, J.K.; Hamilton, J.T.; Botting, C.H.; Douglas, A.; Devine, L.; Nelson, J.; Elliott, C.T. 

Proteomics identification of azaspiracid toxin biomarkers in blue mussels, Mytilus edulis. Mol. 

Cell. Proteomics 2009, 8, 1811–1822. 

114. Tomanek, L.; Zuzow, M.J.; Hitt, L.; Serafini, L.; Valenzuela, J.J. Proteomics of hyposaline stress 

in blue mussel congeners (genus Mytilus): Implications for biogeographic range limits in response 

to climate change. J. Exp. Biol. 2012, 215, 3905–3916. 

115. Fields, P.A.; Cox, K.M.; Karch, K.R. Latitudinal variation in protein expression after heat stress 

in the salt marsh mussel Geukensia demissa. Integr. Comp. Biol. 2012, 52, 636–647. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


