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1. INTRODUCTION

Epigenetics is defined as the heritable changes in gene expression result-
ing from modifications in chromatin structure, without involving changes 
in the genetic information stored in DNA [1]. The understanding of epi-
genetics requires integrative analysis of disparate heterogeneous data to 
generate global interpretations and biological knowledge [2]. The epig-
enome arises from interactions among different epigenetic mechanisms, 
including discrete biomolecules (e.g., nucleic acid–protein interactions) as 
well as chemical modifications (i.e., DNA methylation and protein post-
translational modifications, or PTMs), thus possessing an elaborate com-
binatorial complexity [1]. Peculiarities of each of the different epigenetic 
marks must be taken into account to understand the diverse nature of the 
data resulting from epigenomic studies. The analysis of each one of these 
marks involves specific techniques and work flows, resulting in different 
types of data (Figure 1).

The heterogeneity and scale of data of epigenomics studies pose seri-
ous challenges for computational analyses and information management, 
similar to those created by other complex systems (e.g., markets, social 
dynamics) [3]. Developing more efficient analyses to keep up with the 
pace of data production and expand the frontiers in epigenetics is the cur-
rent task of bioinformatics. Fortunately, a number of efforts are aimed at 
standardizing and integrating heterogeneous data sources in such a way 
that they become suitable for meta-analysis and are openly available to 
the scientific community [4].

In this chapter, we describe the main characteristics of the various types 
of data generated during epigenetic studies, providing a description of the 
most common computational approaches used for their integrative analy-
sis. Additionally, we cover substantial advances in biomedical research 
that are illustrated by the production of online resources and by the 
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2. EPIGENETIC PROFILING

establishment of worldwide consortia for the standardization of molecu-
lar data. These contributions are critical to effectively linking genetic and 
epigenetic data with clinical information and pave the way toward a real-
istic future of personalized medicine.

2. EPIGENETIC PROFILING: HETEROGENEOUS DATA 
AND PARTICULAR CHALLENGES OF DIFFERENT 

EPIGENETIC FACTORS

Epigenetic profiling involves the coordinated study of diverse bio-
logical marks responsible for the transmission of epigenetic information, 
including but not limited to DNA methylation, histone variants and their 
PTMs, and chromatin remodeling complexes. Subsequently, some of the 
most relevant biological aspects of epigenetics research as well as the main 
characteristics of the data that they involve are addressed.

FIGURE 1 Heterogeneous types of data generated from various “omics” and specific 
techniques are included as epigenetic data. High-throughput techniques such as DNA 
sequencing and microarray-based analyses are currently dominant in functional genom-
ics as well as in the study of the methylome, producing specific data formats that must be 
processed and standardized before being compared. Proteomics comprises all chromatin-
related proteins of interest, most notably the histone family, including their possible chemical 
modifications and interactions. In proteomics, gel-based methods and mass spectrometry 
represent the main sources of high-throughput data. The combination of all these disparate 
data types constitutes the bulk of epigenetic information.
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2.1 Methylation Patterns
Methylation is the best studied epigenetic mark, especially pertain-

ing to CpG islands in the case of mammals [5]. A variable percentage of 
the CpG dinucleotides of the genome, ranging from 60% to 90%, is actu-
ally methylated. The remaining portion of CpGs are free of methylation, 
largely constituting the so-called CpG islands, which are usually associ-
ated with gene promoter regions [6]. The presence of methylation marks 
on DNA has been widely associated with repressive states of the chroma-
tin. Moreover, it is hypothesized that its evolutionary origin was the neu-
tralization of invading DNA by blocking its ability to be expressed [7]. The 
actual effect of the methylation transformation of DNA varies depending 
on a number of factors: the proximity of methylated CpG islands to the 
gene promoter, the density of those methylation marks, and the strength 
of the promoter itself [5].

Furthermore, the specific location of the methylation marks in relation 
to the promoter may display contradictory effects. This has been labeled 
as the “methylation paradox” [8]: although methylation of CpG islands in 
the promoter region is strongly associated with inhibition of transcription, 
it has been found that methylation of CpG islands downstream from the 
site of transcription initiation shows no inhibition effect. Furthermore, it 
has been reported that this may actually enhance the levels of transcrip-
tion [9]. Although the specific molecular effects of methylation events may 
be difficult to predict, it is widely accepted that the patterns of methyla-
tion marks are nonrandomly associated with diseases (such as cancer), 
displaying a good level of specificity between tumor types in many  
cases [10].

The previous findings highlight the importance of an accurate map-
ping of methylated sites on the genome at a single-base resolution. 
Unbiased epigenetic mapping and annotation of genomes requires 
high-throughput sequencing techniques; however, more directed meth-
ods such as microarray platforms could also be used. The information 
of which nucleotides (cytosines, C’s) are methylated on the genome is 
lost during PCR amplification and additional experimental steps are 
required, most notably the selective bisulfite transformation of unmeth-
ylated cytosine into thymine (C → T transformation). Each different pro-
cedure requires optimized bioinformatic data-processing techniques to 
produce standardized data summaries that allow comparisons across 
experiments; that is, the differentially methylated regions (DMRs) table. 
To produce these tables, raw data must be processed and controlled for 
quality and then mapped onto a reference genome, and last, an appropri-
ate statistical analysis must be carried out to obtain a list of significantly  
differentially methylated genomic regions along with the absolute values  
of methylation levels.
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2. EPIGENETIC PROFILING

The set of nucleic acid methylation modifications in an organism’s 
genome or in a particular cell is referred to as the methylome. Methy-
lome data processing must address common general problems that are 
posed by high-throughput sequencing or microarray-based techniques. 
Most notably, the bioinformatic analysis of bisulfite-treated DNA is chal-
lenging owing to the decrease in complexity of the sequences after C → T 
transformation. Genome-wide sequencing or enriched DNA libraries pro-
duce a collection of reads that must be aligned to a reference genome. To 
allow the alignment of bisulfite-transformed reads that account for C–T 
mismatches, different approaches can be used. One possible approach 
involves wildcard aligners, which change C’s in the sequence to the degen-
erate IUPAC symbol “Y” (equivalent to both C and T). Another existing 
approach modifies the scoring matrix used by the alignment algorithm to 
prevent penalization of C–T mismatches. As a third possible approach, 
all C’s can be converted into T’s on both reads as well as on the refer-
ence genome. This way, the alignment is worked on a three-letter alpha-
bet for both the template and the complementary strand sequences of the 
genome. All these methods present some bias owing to lower complexity 
in the sequence and consequently a lack of specificity in the alignment, 
causing useful good quality reads to be discarded.

To improve mapping efficiency, additional steps such as local realign-
ment, analysis of sequence quality scores, and the application of statistical 
models of allele distribution can be carried out [11]. The visualization of 
this information can be performed with any available genome browser. 
Methylated positions are often represented using color codes and quan-
titative methylation data with bar charts are superposed. Once mapped, 
quantification of methylation at a single-base resolution is carried out 
and then associated with each genomic position. There are a number of 
well-established protocols for producing bisulfite reads that use high-
throughput sequencing technologies such as methylC-seq [12] and 
reduced representation bisulfite sequencing [13]. Specific bioinformatics 
tools that focus in processing this type of data were developed [14–16]. 
Alternatively, protocols such as methylated DNA immunoprecipitation 
(Me-DIP) use a different approach for methylome analysis based on the 
use of specific antibodies for 5-methylcytosine. This protocol has been 
adapted for the use of both sequencing techniques (Me-DIP-seq [17]) and 
microarray technologies (Me-DIP-chip [18]). When dealing with microar-
ray data, the critical steps to optimize the accuracy of the method include 
image processing and data normalization [19–21]. The final parameters 
calculated are the β-value and the M-value. The β-value represents a ratio 
calculated between the intensity of the methylated probe and the sum 
of the intensities of the methylated and unmethylated probes, while the 
M-value is defined as the log2 transform of the ratio between the intensi-
ties of the methylated and the unmethylated probes [22]. Many pipelines 
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and specific software packages have been developed over time to carry 
out this initial processing of data. The R-Bioconductor repository is par-
ticularly useful since it offers up-to-date analysis packages written using 
the R statistical language [23].

Ultimately, the most common goal of methylome analysis is to find 
significant differences in methylation patterns when comparing several 
groups (i.e., diseased samples vs healthy ones, different tumor types, 
different developmental stages, etc.). Multiple hypothesis testing is 
required; methods such as t test or Wilcoxon rank sum test are commonly 
utilized as a basis. Afterward, an adjustment of the p-values obtained 
with these methods is carried out, always at the cost of reducing the sta-
tistical power of the analysis. The false discovery rate is currently the 
most used. Finally, a ranked list of DMRs is obtained for further analysis 
and interpretation.

2.2 Histone Proteins and Their Chemical Modifications
The study of histones has come a long way since they were simply consid-

ered as structural proteins. Although initially believed to be a simple physical 
support for the DNA within the cell nucleus, it is now clear that histones play 
critical functional roles [24]. Histone proteins are highly conserved through-
out the different branches of the tree of life, being ubiquitous in eukaryotes 
and represented in some Archaea groups. In addition to canonical histone 
types (H1, H2A, H2B, H3, H4), several specialized histone variants have 
arisen during evolution. The recruitment of these variants into nucleosomes 
modulates the physicochemical properties of the chromatin structure, regu-
lating the access of the transcription machinery to target genes [24].

In addition to the characterization of histone variants, posttranslational 
modifications in histones are considered fundamental epigenetic marks. 
Two main approaches can be used for the production of histone mark data: 
unbiased identification and quantitation of histone modifications using 
mass spectrometry methods, or genome-wide mapping of specific modified 
histones using chromatin immunoprecipitation (ChIP) techniques. Taken 
together, histones and their modifications offer an overwhelming range 
of possible combinatorial effects that remains to be fully understood. Sev-
eral efforts have been made to tackle this complex regulatory mechanism, 
including the “histone code” hypothesis [25]. To unravel this hypothetical 
code, innovative analytical techniques in proteomics seek to find the pat-
terns that would work as biomarkers of specific molecular processes.

In addition to the identification of histone genes and the genome-wide 
mapping of histones and PTMs, there are two main aspects of interest 
when considering histone proteomics: first, the quantification and com-
parison of expression levels and modification levels; second, the struc-
tural characterization and the simulation of the protein dynamics under 
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2. EPIGENETIC PROFILING

specific conditions. In this section, these two issues are addressed, and an 
overview of the different types of data that can be produced in this context 
is provided.

2.2.1 Quantitative Protein Analysis
Current advances in proteomic techniques, using both gel-based and 

gel-free methods, allow high-throughput quantitative analysis of pro-
teins. To date, the most widely used technique in proteomic analysis has 
been two-dimensional gel electrophoresis (2DGE). From a computational 
perspective, the analysis of 2DGE requires the development of image pro-
cessing algorithms that allow the accurate reading and comparison of the 
gels, requiring the processing of thousands of spots that correspond to the 
various proteins separated by the technique [26]. The intensity of the spot 
correlates with the amount of protein present in the sample. Therefore, 
differential expression analysis can be carried out by aligning the spots 
obtained from a problem sample with those spots from a control sample 
with the aim of finding the correspondence and subsequently calculating 
the difference in their intensity levels [27].

Gel-based methods, however, are rapidly being displaced by “shot-
gun” methods, mainly involving liquid chromatography coupled to mass 
spectrometry (LC–MS) [28]. The nature of the data obtained from LC–MS 
analyses is substantially different from the data observed from the 2D 
gels. Mass spectrometry ionizes molecules and separates them accord-
ing to their mass-to-charge ratio under an electrical field. Results are then 
recorded in the form of a mass spectrum. Mass spectra provide a graphi-
cal representation of the different masses of ions detected in the analysis. 
Different mass spectrum peaks correspond to different mass/charge ratios 
(usually the charge equals 1, thus the peak simply represents the mass of 
the ion), and the area under the peak corresponds to the quantity of ions 
detected. Automated analyses of mass spectra are possible by comparing 
the observed patterns of peaks with those stored in databases. Once the 
elements of interest are identified, absolute quantification analyses are pos-
sible using calibration curves, as well as relative quantification analyses.

LC–MS techniques do not allow just the identification of the proteins, 
but also the identification of their chemical modifications. Alternatively, 
ChIP-seq data on histone marks can also be considered quantitative, 
thus allowing differential analyses. Computational methods like that one 
described by Xu et al. compare the differences in read count between two 
sequencing libraries, using hidden Markov models (HMMs), with the 
objective of finding differential histone modification sites [29].

2.2.2 Structural Modeling and Dynamic Simulation
The traditional method for modeling the three-dimensional structure of 

proteins that have a well-defined crystal structure from X-ray diffraction 
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or nuclear magnetic resonance analysis is comparative modeling (also 
known as homology modeling). In this method, an initial known struc-
ture of a homologous protein is used as a template to build the predicted 
structure of the target protein. This is possible because the protein struc-
ture is evolutionarily more conserved than the corresponding genetic cod-
ing sequence [30]. The structures of template proteins can be obtained in  
protein data bank (pdb) format files from the RCSB Protein Data Bank [31].  
Three-dimensional modeling can be useful in the prediction of the  
dynamic effects caused by the structural and physicochemical variations. 
An application of these techniques in epigenetics would involve the pre-
diction of changes in nucleosome and chromatin structure resulting from 
the replacement of canonical histones by histone variants. However, the 
study of histone variants poses specific challenges since the majority of the 
structural differences tend to accumulate in the most external and dynamic 
part of the protein chain [32], that is, the tails, which are especially difficult 
to study by X-ray diffraction methods and therefore difficult to model.

For dynamic studies, molecular dynamics simulations are frequently 
used [33,34]. In these methods, the known structure of the protein is 
translated into an array of coordinates for every atomic nucleus pres-
ent. These are allowed to vibrate under a simulated force field while the 
instantaneous kinetic and potential energies for each atomic bond are cal-
culated ab initio. These methods produce a very visual output by which 
the movement of the protein and the development of chemical processes 
can be observed, conveying a very important application for novel drug 
discovery and design [35,36]. These methods are applicable for the com-
putational prediction of condensation levels of the DNA in the nucleo-
somes and, subsequently, to gauge the transcriptional accessibility of the  
genetic material, providing insights of great value for further experimental  
validation.

2.3 Nucleosome Positioning
Nucleosomes are the fundamental subunits of the chromatin, consti-

tuted by segments of DNA wrapped around a core structure of histone 
proteins. Nucleosome structure and positioning have direct implications 
for gene transcription since the majority of transcription factors can-
not bind DNA packed by nucleosomes. Additionally, the positioning of 
nucleosomes can be actively modified by ATP-dependent remodeling 
factors that dynamically reorganize the structure of the chromatin [37]. 
Therefore, the accurate genome-wide mapping of nucleosomes and the 
analysis of their dynamics convey critical information about the epigen-
etic state of the cell.

The genome-wide analysis of specific chromatin components has been 
traditionally carried out using ChIP-based technologies (ChIP-seq or 
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ChIP-chip) [38]. ChIP-based techniques target specific proteins (usually 
histone variants including PTMs) using appropriate antibodies; that pro-
tein is then precipitated together with its associated DNA. More recently, 
the combination of a digestion step with DNases and high-throughput 
sequencing methods has been successfully used for this purpose, allowing a 
single-nucleotide resolution for the mapping of nucleosome positions [39].  
With either one of these techniques, the bioinformatic analysis starts with 
the processing of high-throughput sequencing data followed by the map-
ping of those sequences on a reference genome to specify the protein-
binding loci. The computational challenges of these methods are the 
common issues of short-read alignments [40,41].

When experimental data is lacking, however, it is still possible to per-
form computational predictions of nucleosome positioning based on 
motifs found on the genome sequence and thermodynamic properties of 
the chromatin [42,43].

2.4 Noncoding RNA
Part of what was considered years ago as “junk DNA” is nowadays an 

important focus of research for the scientific community. Although the inclu-
sion of the ncRNA as an epigenetic mark at the same level of the methylome 
or the chromatin remains controversial, there is a general trend toward its 
acceptance [44–49], specifically regarding the role of long noncoding RNA in 
the epigenetic regulation of gene expression through interactions with chro-
matin-modifying proteins [50]. One of the most particular computational 
methods used in this field is the one that serves as the basis for compara-
tive genomics. This approach is known as the “guilt by association” method 
and it implies functional inference through the observation of consistent 
coexpression events. In general, the construction of interaction networks in 
epigenetics is a problem that involves all different factors mentioned here 
as well as others that have been overlooked, such as chromatin-associated 
proteins (which may have a direct influence in the chromatin structure and  
dynamics) [51]. This problem involves difficulties well beyond the data  
processing related to the extraction of knowledge from heterogeneous data.

3. EPIGENETIC DATA INTEGRATION AND ANALYSIS

Data integration refers to the process by which a system combines 
information from different sources to make meaningful interpretations 
and produce relevant outcomes. Epigenetics is a field of research in which 
data integration is especially relevant, given the complex nature and inter-
actions among the mechanisms responsible for various epigenetic marks. 
Data from various epigenomic studies, which may be obtained through 
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different techniques, must be analyzed from a holistic perspective. Addi-
tional marks encompassing potential epigenetic relevance that can be 
considered include other chromatin-associated biomolecules such as his-
tone-modifying enzymes and remodeling factors.

The number of existing bioinformatics resources created for this general 
purpose has steadily increased. These resources include tools, services, 
databases, standards, or even terminologies for each specific domain or 
area of expertise. Many publications highlight the importance and use-
fulness of properly integrating different types of biomedical data [52]. 
The large amount of information and diverse technology platforms raise 
multiple challenges, regarding not only data access, but also data process-
ing [53]. More specifically, in the context of epigenetics, it is very likely 
that data-integrating approaches, with the aim of identifying functional 
genetic variability, represent a possible solution to the challenge of inter-
preting meaningfully the results of genome-wide profiling [54].

3.1 Quality and Format Standards for Data Integration
The most significant barrier for adopting a holistic perspective on data 

obtained from different sources is probably the standardization of meth-
ods and formats. Standardization in file formats allows the machine to 
find the specific pieces of information required for each step of the pro-
cessing algorithm. This issue has been recognized and addressed through 
the establishment of consortia that specify necessary standards for the 
scientific community. The ultimate goal is to make all the produced data 
suitable for integrative analyses. The standards often refer to the metadata 
of the data sets (i.e., “data about the data”) that are generated, information 
about the experiments that produced those data sets, and other general 
characteristics. For biomedical and molecular biology research, the MIBBI 
project is an important global endeavor with the objective of establish-
ing data standards to aid collaboration and meta-analyses [4]. Consisting 
of many subprojects, MIBBI suggests protocols to standardize report-
ing of data. From the well-established MIAME project for gene expres-
sion data obtained with microarray technologies [55], to the more recent 
MIAPE for proteomics data reports [56], it also addresses data standards 
relevant for epigenetics. In each of these protocols for standards compli-
ance, all the various possible technologies and preprocessing methods for 
the generation of data sets are considered. Specific data exchange formats 
are designed to allow automated interpretation of the various data sets, 
mainly using tag-based structures such as the widely known XML.

Data standardization is crucial in bioinformatics and there exist multi-
ple emerging standards that go beyond the scope of this chapter. Chervitz 
et al. provide a detailed review of the most relevant standards that may be 
applied to epigenetics [57].
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3.2 Data Resources
A database may be defined as a searchable collection of interrelated 

data. The amount of high-throughput biological data generated has 
increased exponentially [58]. Furthermore, these types of data (including 
sequences, microarray data sets, gel imaging files, etc.) are not published 
in a conventional manner anymore; they are stored in databases. In fact, 
many journals require researchers to upload their data to specific reposi-
tories prior to trying to publish their research work.

The need for storing and linking large-scale data sets has also consis-
tently increased. Archiving, curating, analyzing, and interpreting all of 
these data sets represent a major challenge. Therefore, the development of 
methods that allow the proper storage, searching, and retrieval of infor-
mation becomes critical. Databases represent the most efficient way of 
managing this glut of data. The construction of databases and tools that 
allow accessing the data will enable the scientific community to man-
age and share vast amounts of high-throughput biological information. 
Hence, support for large-scale analysis is essential. Access to data must 
be facilitated and data must be periodically updated. Specifically in epi-
genetics, browsers have been made available to the scientific community 
facilitating the access and integration of the data generated by some of 
the initiatives described in the next section. Among these, we can find 
the UCSC Genome Browser [59], the Roadmap Epigenomics Visualiza-
tion Hub (VizHub), and the Human Epigenome Browser at Washington 
University [60] (Table 1). Finally, knowledge extracted from various fields 
involving, among others, different disciplines within epigenetics and gen-
eral biology, as well as clinical medicine, must be linked.

Given all of the above, it is clear that databases have become vital for 
carrying out successful bioinformatics research. They make data available 
to researchers in a format that is understandable by a machine. Hence, 
analyses can be carried out automatically with computers, managing 
great amounts of data and providing user-friendly interfaces. Data will 
be stored in predefined formats making possible the automatic retrieval 
of information. Ultimately, valuable extra information could be extracted 
if data are properly linked to external resources. However, an important 

TABLE 1 Epigenetic Browsers

Browser name Web site

UCSC Genome Browser http://www.epigenomebrowser.org

Human Epigenome Browser at Washington 
University

http://epigenomegateway.wustl.edu/

VizHub http://vizhub.wustl.edu
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challenge that must be taken into account is the proper anonymization of 
data, to protect the privacy of the subjects who participate in the studies 
from which the data are collected.

3.2.1 Large-Scale Projects and Consortia
There exist numerous initiatives that manage huge amounts of diverse 

biological data, such as the Encyclopedia of DNA Elements (ENCODE) 
[61] or the Human Epigenome Project (HEP) [62]. The first project involves 
researchers from all over the world and can be considered a continuation 
of the Human Genome Project. Its objective is to identify all functional 
elements in the human genome and is funded by the National Human 
Genome Research Institute. Under the ENCODE project, many compu-
tational approaches were developed to handle epigenomic data [63–66]. 
The second project, on the other hand, seeks the identification and classi-
fication of genome-wide DNA methylation patterns for all human genes, 
studied in different tissues, linking this information to diseases and envi-
ronmental conditions. This project is an international endeavor of global 
interest, and it is funded by public funds as well as private investment via 
a consortium of genetic research organizations.

Other relevant initiatives include the NIH Roadmap Epigenomics 
Mapping Consortium [67], which was launched in 2008. The goal of this 
project was to develop publicly available resources (more specifically, ref-
erence epigenome maps from a variety of cell types) of human epigenomic 
data to foster basic biology and disease-oriented research. On this basis, 
two data repositories were made available: the National Center for Bio-
technology Information (NCBI) Epigenome Gateway and the Epigenome 
Atlas (see Table 2 in the next section).

The NIH Roadmap Epigenomics Program is a member of the Interna-
tional Human Epigenome Consortium [68], a growing international effort 
to coordinate worldwide epigenome mapping and to disseminate experi-
mental standards for epigenome characterization, officially presented in 
2010.

Other U.S. initiatives include the Epigenetic Mechanisms in Cancer 
Think Tank [69], sponsored by the National Cancer Institute in 2004, and 
the American Association for Cancer Research Human Epigenome Task 
Force [70], which emerged from a series of workshops and included scien-
tists from all over the world.

Epigenetic research has been funded by several entities outside the 
United States as well. The European Union has dedicated significant 
amount of resources (more than €50M) over the years. Numerous initiatives 
have been funded, such as the above-mentioned HEP, High-Throughput 
Epigenetic Regulatory Organization in Chromatin, and Epigenetic Treat-
ment of Neoplastic Disease, to focus on general questions such as DNA 
methylation, chromatin profiling, and treatment of neoplastic disease, 
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respectively. Furthermore, the European Commission created in 2004 the 
Epigenome Network of Excellence [71] with the objective of studying 
major epigenetic questions in the postgenomic era.

Asia has focused mainly on disease epigenomes through the organization 
of various international meetings, as well as the creation of the Japanese Soci-
ety for Epigenetics. Australia has also contributed to the Human Epigenome 
Project by creating in 2008 the Australian Alliance for Epigenetics and hold-
ing several workshops. Finally, Canada tried to position itself at the forefront 
of international efforts by creating the Canadian Epigenetics, Environment 
and Health Research Consortium, which is funded by the Canadian Insti-
tutes of Health Research and multiple Canadian and international partners.

TABLE 2 Epigenetic Resources

Resource name Web site

Cancer Methylome System http://cbbiweb.uthscsa.edu/KMethylomes/

DBCAT http://dbcat.cgm.ntu.edu.tw/

CREMOFAC http://www.jncasr.ac.in/cremofac/

EpimiR http://bioinfo.hrbmu.edu.cn/EpimiR/

HEMD http://mdl.shsmu.edu.cn/HEMD/

Histome http://www.actrec.gov.in/histome/

HistoneHits http://histonehits.org

Histone Database http://research.nhgri.nih.gov/histones/

Human Epigenome Atlas http://www.genboree.org/epigenomeatlas/

Human lincRNA Catalog http://www.broadinstitute.org/genome_bio/ 
human_lincrnas/

MeInfoText http://bws.iis.sinica.edu.tw:8081/MeInfoText2/

MethBase http://smithlabresearch.org/software/methbase/

MethDB http://www.methdb.net/

MethyCancer http://methycancer.psych.ac.cn/

MethyLogiX http://www.methylogix.com/genetics/ 
database.shtml.htm

NCBI Epigenomics Gateway http://www.ncbi.nlm.nih.gov/epigenomics/

NGSMethDB http://bioinfo2.ugr.es/NGSmethDB/

NONCODE http://www.noncode.org/

PEpiD http://wukong.tongji.edu.cn/pepid

PubMeth http://www.pubmeth.org/
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As a worldwide initiative, and with the aim of joining all possible 
efforts, the Alliance for the Human Epigenome and Disease [72] was cre-
ated. The aim of this project was to provide high-resolution reference 
epigenome maps, which will be useful in basic and applied research, will 
have an impact on how many diseases are understood, and, ultimately, 
will lead to the discovery of new ways of controlling these diseases.

3.2.2 Data Models
3.2.2.1 Traditional Database Models

Traditionally, most databases have followed what is known as the 
“entity-relationship model.” This model tries to describe the data using 
entities, which correspond to concepts or objects, and relationships that 
may exist between these. In general, this model leads to a relational data-
base implementation.

Most databases are usually offered as part of a tool or a service, which 
in most cases is presented through a Web interface. Most of them provide 
free access via the Internet and/or allow researchers the visualization or 
downloading of data. There exist numerous resources of this type in the 
field of epigenetics [73] and, in many cases, they have been constructed as 
a result of text mining analyses (see Section 3.3.3). Some of these widely 
used resources are listed in Table 2.

The NCBI, the European Bioinformatics Institute (EMBL-EBI), and the 
DNA Data Bank of Japan represent the three most important and larg-
est available resources regarding biomedical databases. Major databases 
included as part of the first resource are GenBank (for DNA sequences), 
Gene Expression Omnibus, and PubMed (bibliographic database of 
biomedical literature). The EMBL-EBI provides major bioinformatics 
resources such as Ensembl, UniProt, ArrayExpress, and Reactome, among 
others, as well as tools and services to browse and analyze these databases.

The existing epigenetic databases can be broadly classified into sev-
eral categories according to the type of data they store. The first category 
includes DNA methylation databases. These databases are useful for study-
ing the covalent modification of a cell’s genetic material. Among these, we 
can find DBCAT, MethBase, MethDB, MethyLogiX, and NGSMethDB.

The second category contains all of those databases related to histone data. 
Histone databases are important for research in the compaction and acces-
sibility of eukaryotic and probably Archaeal genomic DNA. Some examples 
of this type of database are Histome, HistoneHits, and Histone Database.

The third category comprises databases related to chromatin-asso-
ciated factors. Although the molecules involved in these processes are 
not directly part of the chromatin, they do interact with it. Within this 
category, databases including chromatin remodeling factors or noncod-
ing RNA data can be found: CREMOFAC, Human lincRNA Catalog, and 
NONCODE.
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The fourth category includes epigenetic databases related to cancer. 
Most of them are cancer methylation databases, which are helpful for 
analyzing irregular methylation patterns correlated with cancer. Some of 
these databases are Cancer Methylome System, MeInfoText, MethyCan-
cer, PEpiD, and PubMeth.

Finally, other more general databases including all types of epigen-
etic information can be found. Some examples are EpimiR, HEMD, and 
NCBI Epigenomics Gateway. All the resources mentioned are listed in 
Table 2.

3.2.2.2 Nontraditional Models

Recently, new models involving semistructured or nonstructured data 
have gained more attention in scientific fields. Big companies such as 
Google or Amazon have put a lot of effort into NoSQL resources. NoSQL, 
also known as Not Only SQL, provides a mechanism for storing and 
retrieving data that is modeled different from the tabular relations used in 
relational databases. In this regard, the biomedical field has taken advan-
tage of the Semantic Web and, thus, has focused on developing resource 
description framework (RDF)-based solutions.

The Semantic Web can be seen as an extension of the World Wide Web. 
It allows people to share content by providing a standardized way of rep-
resenting the relationships between Web pages. Thus, machines will be 
capable of understanding the meaning of hyperlinked information and 
the information will be given well-defined meaning.

In this context, the RDF model should be highlighted. The RDF, although 
it was originally designed as a metadata model, is being utilized as a general 
manner of describing concepts or modeling information (being widely imple-
mented in Web resources) and represents the immediate future [74].

Based on the use of RDF, many approaches in computational bioinfor-
matics have been developed. As of this writing, mashups are the most 
frequent ones. These Web pages or applications, taking advantage of the 
Semantic Web, use content from different data sources with the aim of 
creating one unique service that will be displayed by means of a single 
graphical interface. Therefore, the main objective is to make searches eas-
ier and data more useful.

To integrate and standardize different databases, there have been 
approaches, such as Bio2RDF [75], that try to help solve the problem of 
knowledge integration in bioinformatics by developing a mashup applica-
tion. Other authors developed an ontology-driven mashup that integrates 
two resources of genomic information and three resources containing 
information of biological pathways [76], proving that Semantic Web tech-
nologies provide an effective framework for information integration in life 
sciences. Cheung et al. demonstrate the power of the Semantic Web by 
applying different tools to two different scenarios, concluding that these 
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could be used by people without programming experience to accomplish 
useful data mashup over the Web [77].

3.3 Knowledge Discovery in Databases
The aim of knowledge discovery in databases (KDD) is to make sense 

out of data. Traditionally, this task was carried out manually. Nowadays, 
however, given the amount of data involved, various computational 
methods and techniques have become indispensable, taking advantage of 
the processing power offered by computers and turning a tedious process 
into a largely automatized procedure.

Trying to extract knowledge from data is a nontrivial process. KDD 
involves several stages, each with its own complexity: data acquisition 
and storage, data preprocessing and transformation, data mining, and 
data postprocessing (see Figure 2). Hence, this includes data prepara-
tion and selection, data cleaning, incorporating prior knowledge in data 
sets, and interpreting accurate solutions from the observed results. The 
use of data warehouses, understood as central repositories of information 
obtained from the integration of data from diverse data sources, can make 
some of these tasks easier to deal with. This type of data resource was 
designed to facilitate massive data analyses and, therefore, the reporting  
of results. However, the still increasing volume of data available introduces 
a new challenge, that is, algorithms must be scaled to support massive  
data analysis and management.

FIGURE 2 The knowledge discovery in databases process. The various stages of this 
process and the products obtained as a result of each stage are shown. Data are acquired 
and stored from different heterogeneous data sources. As part of this stage, it may be neces-
sary to prepare and obtain a selection of the available input data. After that, the data goes 
through a preprocessing and transformation phase, in which they will be cleaned and inte-
grated, obtaining a consistent data resource. Over this resource, data mining techniques can 
be applied, obtaining as a result different patterns and/or models. Finally, these results are 
postprocessed to extract the final product of the whole process, that is, knowledge.
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3.3.1 Data Preprocessing
The data preprocessing stage involves not only selecting the data 

sources, but also handling missing data issues and altering the data if nec-
essary. Data integration is not trivial, a convenient model must be chosen 
because this will have a direct impact on the performance of the bioinfor-
matics pipeline.

3.3.1.1 Data Enrichment

Countless efforts have been made to integrate various resources and 
data existing over the Internet, especially in the biomedical field, and, for 
this purpose, standards and/or terminologies, such as ontologies, have 
been developed.

Ontologies can be defined as a set of concepts (terms) and the relation-
ships among them as representing the consensual knowledge of a spe-
cific domain. Ontologies can be represented as graphs (with the nodes 
representing terms and the edges representing relationships) or as trees 
(with the nodes as terms and the branches representing hierarchical 
relationships).

Ontologies enable a clear and unified machine-readable vision of a 
domain that enables sharing, reusing (partially or totally), and extending 
knowledge. They are currently the most utilized form for representing 
biomedical knowledge. Furthermore, it is a field in which a lot of effort is 
being dedicated, with an increasing rate of usage. Within the Semantic Web 
(described in the previous section), they have become a key element since 
they make knowledge representation easier. They are also playing a major 
role regarding linked data, that is, a way of publishing structured data so 
that it can be interconnected and, hence, more useful. There currently exist 
more than 300 biomedical ontologies, and BioPortal [78] is the most impor-
tant resource, providing access and tools for working with them.

Most studies involving epigenetics use Gene Ontology (GO) [79] to 
enrich data and draw conclusions from it. The GO project is a collaborative  
effort to address the need for consistent descriptions of gene products 
across databases. The GO project offers three structured, controlled 
vocabularies (ontologies) that describe gene products in terms of their 
associated (1) biological processes, (2) cellular components, and (3) 
molecular functions. Using GO terms across databases enables one to 
obtain more uniform queries. Apart from maintaining and developing 
these ontologies, other aims of the project are annotating genes and gene 
products, as well as assimilating and disseminating these data, or pro-
viding tools that facilitate accessing and utilizing the data and that allow 
functional interpretation of experimental data using GO, for example, via 
enrichment analysis.

GO-based analyses have been used to obtain clusters and to do func-
tional analyses by looking for over- and underrepresentation of GO terms, 
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possibly after combining genomic and transcriptomic data [80–83]. KEGG 
pathways have also been used in this context [84–86].

Finally, other existing approaches include Chromatin Regulation Ontol-
ogy siRNA Screening, a new method that has been developed to identify 
writers and erasers of epigenetic marks [87]. In this work, the authors use 
this method to identify chromatin factors involved in histone H3 methyla-
tion and conclude that it facilitates the identification of drugs targeting 
epigenetic modifications.

3.3.1.2 Massive Data Set Analysis

Analysis of large data sets usually implies having to preprocess the data 
or represent it in certain ways. For instance, dimensionality reduction may 
be carried out to reduce the number of initial variables and obtain a more 
manageable data set [88]. Many techniques model data using graphs, net-
works, or matrices. These approaches are very powerful and allow hidden 
relationships to be found, as well as giving a new perspective of the data. 
Here, some examples of this are included.

Goh and Wong [89] present four scenarios in which building networks 
from proteomics data improves the results. They find that networks are 
convenient for identifying primary causes of cancer, given that they can 
reflect a structured hierarchy of molecular regulations. The typical net-
work-based analysis framework for proteomics would include several 
stages. The first would involve data preprocessing, in which the data 
would be transformed into a network. The second would involve the 
usage of supervised or unsupervised methods such as those described 
above. Finally, the third stage would involve interpreting and evaluat-
ing the results obtained. Another example of this type of data representa-
tion is that proposed by Zheng et al. [90], in which they encode histone 
modification data as a Bayesian network for gene-regulatory network 
reconstruction.

Principal component analysis (PCA) has also been used to reduce data 
dimensionality. For example, Dyson et al. [91] and Figueroa et al. [92]  
use PCA on gene expression array data, while Volkmar et al. [93] use it 
on DNA methylation data. Cieślik and Bekiranov [63] take advantage 
of nonnegative matrix factorization to reduce the dimensionality of 
epigenetic data. Clustering techniques may also be used for reducing  
dimensionality [94].

3.3.2 Data Mining
The data mining stage, as part of the KDD process, involves choos-

ing the most appropriate method or technique to be used for searching 
underlying patterns, as well as the creation of explicative and/or predic-
tive models [95]. This stage comprises deciding which models and param-
eters might be appropriate for the overall KDD process. Also, searching 
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for patterns of interest in a specific representational form (such as trees or 
rules) and applying tools such as regression or clustering are part of the 
data mining stage. Finally, the most important part is the interpretation of 
the relevant knowledge that can be drawn from the obtained results. This 
knowledge may then be used and/or incorporated into the bioinformatic 
analysis pipeline.

Two distinct approaches can be considered in data mining tech-
niques: supervised and unsupervised methods. Supervised methods 
try to obtain relationships between a set of independent variables and 
a dependent variable. Therefore, the objective of these methods will 
be to infer a function from labeled training data. In this case, the com-
puter’s task will be the extraction of patterns from the input data to get 
the dependent or target variable. For this approach, two different types 
of problem can be identified. On one hand, the first type corresponds to 
those cases in which the dependent variable is categorical or nominal, 
usually referred to as a “class.” On the other hand, the second type cor-
responds to those problems in which the dependent variable can take 
infinite numeric values, that is, a continuous variable. Thus, we call 
the first type classification problems and the second type regression 
problems.

Schäfer et al. present a Bayesian model for carrying out integrative 
analyses using “omics” data [96]. A Bayesian mixture model is utilized 
to compare and classify measurements of histone acetylation in order to 
identify DNA fragments obtained from ChIP analyses. Mo et al. [97] pro-
pose a framework for joint modeling of discrete and continuous variables 
obtained from integrated genomic, epigenomic, and transcriptomic profil-
ing. Within this framework, the authors developed iCluster+. This method 
is capable of performing pattern discovery that integrates binary, categori-
cal, and continuous data. It is based on different types of regression (linear 
and lasso regression), and it is used to extract novel biological information 
from integrated cancer genomic data for tumor classification and cancer 
gene identification. As a last example, Gonzalo et al. [98] apply logistic 
regression adjusted for different factors to colorectal cancer data, with the 
aim of evaluating the difference in DNA methylation data between two 
independent groups.

Unlike supervised techniques, when using unsupervised methods, no 
target variable is specified. In this case, instead of asking the computer to 
predict the value of a dependent variable out of a given data set (which 
corresponds to the independent variables), the question will be “which 
are the best four groups that can be made out of the data?” or “which 
variables are most likely to occur together?” On this basis, two types of 
problems can be identified. The first is clustering and it consists in group-
ing similar items together. The second is association analysis and it entails 
finding which features are most frequently found together.
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Hierarchical clustering is by far the most popular method when try-
ing to analyze epigenetic data. This technique groups data by creating a 
hierarchy of clusters, known as a cluster tree or dendrogram. Addition-
ally, k-means is also frequently chosen to carry out this type of analyses. 
This technique partitions the observations into k clusters, in such a way 
that each observation will belong to the cluster that has the closest mean, 
known as a centroid. After that, centroids are updated as the mean value 
of the observations that belong to the cluster. This process is repeated iter-
atively until the centroids do not change.

DeltaGseg [99] is an R package that applies hierarchical clustering for 
preprocessing signals to perform estimations from multiple replicated 
series. Hence, molecular biologists/chemists will be able to gain physical 
insight into the molecular details that are not easily accessible by experi-
mental techniques. Unsupervised hierarchical clustering was also utilized 
by Busche et al. [100] to cluster methylation levels and by Towle et al. [86] 
to analyze methylation patterns.

Zeller et al. [83] applied both hierarchical clustering and k-means to 
DNA methylation profiles to validate the results. Another study used 
both techniques to cluster transcription factors [101]. Clifford et al. [102] 
compared hierarchical clustering to other clustering techniques (k-means, 
k-medoids, and fuzzy clustering) to determine the most appropriate 
one for analyzing Illumina methylation data. Since no significant differ-
ence was found between the methods, a combination was proposed; the 
final output will be given by the method that achieves the best results in 
each case. McGaughey et al. applied k-means to methylation data and 
observed that genome-wide methylation signals can reliably distinguish 
tissues [103].

In contrast to these two widely used methods, Jung et al. devel-
oped a density-based PIWI-interacting RNA (piRNA) clustering algo-
rithm named piClust [104]. This algorithm is provided as a Web service 
through a graphical interface. piClust works as follows: first of all, it 
determines the clustering parameters carrying out a k-dist analysis; then 
it clusters preprocessed and previously aligned reads; last, it scores and 
validates candidate piRNA clusters. Ucar et al. [105] present an unsu-
pervised subspace-clustering algorithm, named “coherent and shifted 
bicluster identification,” which was designed to identify combinato-
rial patterns of chromatin modification across a specific epigenome. It 
was believed that applying this tool to the epigenome would help in 
the understanding of the role of chromatin structure in gene expres-
sion regulation. Yu et al. [106] proposed an algorithm, named GATE, 
for clustering genomic sequences based on spatiotemporal epigenomic 
information. This algorithm is based on a probabilistic model that was 
developed to annotate the genome using temporal epigenomic data. 
Each cluster obtained, which was modeled as an HMM, represented 
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a time series of related epigenomic states. Steiner et al. [107] used an 
artificial neural network, more specifically a self-organizing map, 
to perform clustering, multidimensional scaling, and visualization  
of epigenetic patterns.

Last, Bayesian methods are on the rise, becoming an interesting alter-
native for unsupervised classification. Zhang et al. [108] developed 
an adaptive clustering algorithm aimed at analyzing ovarian cancer 
genome-wide gene expression, DNA methylation, microRNA expression, 
and copy number alteration profiles following an integrative approach. 
The method proposed combines an adaptive algorithm based on the 
Bayesian information criterion with another deep clustering algorithm, 
which was published previously (“super k-means”). Finally, Wockner 
et al. [109] used a recursively partitioned mixture model to cluster DNA 
methylation data, with the aim of obtaining profiles that could be used 
as a future prognostic indicator of schizophrenia. This model combines a 
fuzzy clustering algorithm with a level-weighted version of the Bayesian 
information criterion.

3.3.3 Text Mining
Within the scope of data mining techniques, text mining or text data 

mining can be defined as the process of deriving high-quality informa-
tion from text. This way, the information is obtained by observing pat-
terns and/or trends through the application of various techniques, such 
as statistically based ones. Text mining usually entails structuring the 
input text (by parsing it, adding and/or removing linguistic features, 
and inserting the result into a database), deriving patterns within the 
preprocessed data, and, last, evaluating and interpreting the output. 
Therefore, it can be considered as a special case of data mining. Text 
mining is very useful in the process of building databases and allows 
automatizing literature search, which is usually done manually and is 
time-consuming [110–114].

Kolářik et al. [115] proposed an approach designed for the identifica-
tion of histone modifications in biomedical literature with conditional 
random fields and for the resolution of known histone modification term 
variants by term standardization. As part of their work, these authors also 
developed a histone modification term hierarchy to be used in a seman-
tic text retrieval system. They concluded that this approach significantly 
improves the retrieval of articles that describe histone modifications. Bin 
Raies et al. [116] presented an innovative text mining methodology based 
on the concept of position weight matrices for text representation and fea-
ture generation. This concept was applied in combination with the docu-
ment-term matrix, with the purpose of accurately extracting associations 
between methylated genes and diseases from free text. This methodology 
is offered also as a Web tool called DEMGD.
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Ongenaert and Dehaspe [117] proposed a tool for automatic literature 
retrieval and annotation of DNA methylation data named GoldMine. This 
tool, taking into account data introduced by the user (a list of genes, key-
words, and highlighting terms), carries out a search over PubMed and 
then processes the results. Li and Liu [118] also perform text mining over 
PubMed, but in this case, to obtain a list of candidate biomarkers.

4. CONCLUSIONS AND FUTURE TRENDS

The need for processing and interpreting the huge volume of biological 
data being produced in the postgenomic era (especially that pertaining to 
the mechanisms underlying the epigenetic transmission and regulation of 
heritable information) is currently being addressed by the development 
of big international projects and standardization endeavors. With the fast 
growth of the field of bioinformatics, a new landscape of possibilities for 
massive generation of biological knowledge is in sight. The computational 
modeling of systems considering simultaneously all relevant factors 
in a time-resolved manner is indeed the ultimate frontier for epigenetic 
knowledge. The development of databases and specialized algorithms 
and software for dynamic simulations should enhance modeling and pre-
diction in epigenetics. Given the amount of data involved and its predict-
able exponential growth, it is essential that researchers divide the work 
and that decentralized data storage is used. Multidisciplinary collabora-
tion seems to be the most adequate way to cover all the possible research 
perspectives. Researchers usually have at their service high-performance 
computing systems, such as clusters, to carry out computationally expen-
sive tasks. However, it will be essential to continue working on differ-
ent types of data representations and making algorithms more efficient so 
that they are scalable for big data analysis. Not only will a decentralized 
approach be required to achieve this objective, but also the parallelization 
of the algorithms must be strongly considered. In this sense, technologies 
such as grid computing appear to be a very promising approach. This type 
of computing involves many networked, heterogeneous, and geographi-
cally dispersed computers, which will probably be loosely coupled, acting 
together to perform large tasks.

Although a considerable number of epigenetic resources are currently 
available, these repositories of information are not usually linked. This 
could be considered an example of what is known as “the functional silo 
syndrome.” To avoid this and with the aim of integrating and linking as 
much information as possible to take the best out of it, the RDF repre-
sents an interesting solution. In combination with ontologies, and what is 
known as ontology-based data mining, this will very probably be involved 
in the future of computational epigenetics. Multiple initiatives have been 
created to move forward in this direction.
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LIST OF ACRONYMS AND ABBREVIATIONS

2DGE Two-dimensional gel electrophoresis

ChIP Chromatin immunoprecipitation

DMR Differentially methylated region

EMBL-EBI European Bioinformatics Institute

GO Gene Ontology

HEP Human Epigenome Project

HMM Hidden Markov model

KDD Knowledge discovery in databases

LC–MS Liquid chromatography coupled to mass spectrometry

NCBI National Center for Biotechnology Information

ncRNA Noncoding RNA

NIH National Institutes of Health

PCA Principal component analysis

piRNA PIWI-interacting RNA

RDF Resource description framework
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