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Abstract: Periwinkles of the family Littorinidae (Children, 1834) are common members of seashore
littoral communities worldwide. Although the family is composed of more than 200 species belonging
to 18 genera, chromosome numbers have been described in only eleven of them. A molecular
cytogenetic analysis of nine periwinkle species, the rough periwinkles Littorina arcana, L. saxatilis,
and L. compressa, the flat periwinkles L. obtusata and L. fabalis, the common periwinkle L. littorea,
the mangrove periwinkle Littoraria angulifera, the beaded periwinkle Cenchritis muricatus, and the
small periwinkle Melarhaphe neritoides was performed. All species showed diploid chromosome
numbers of 2n = 34, and karyotypes were mostly composed of metacentric and submetacentric
chromosome pairs. None of the periwinkle species showed chromosomal differences between male
and female specimens. The chromosomal mapping of major and minor rDNA and H3 histone gene
clusters by fluorescent in situ hybridization demonstrated that the patterns of distribution of these
DNA sequences were conserved among closely related species and differed among less related
ones. All signals occupied separated loci on different chromosome pairs without any evidence of
co-localization in any of the species.

Keywords: periwinkles; chromosome; fluorescent in situ hybridization; histone genes; ribosomal
RNA genes

1. Introduction

The family Littorinidae (Children, 1834) comprises more than 200 species of periwinkles
grouped in 18 genera that are common members of marine intertidal communities around the world.
Although the systematics and evolution of the Littorininae have been widely studied [1–4], there is
still some degree of taxonomic confusion due in part to the high phenotypic polymorphism showed
by some of the taxa. This, together with the existence of species complexes where gene flow and/or
incomplete lineage sorting has been detected between closely related species, makes their identification
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difficult for downstream evolutionary and ecological studies. The best known of these complexes
of species are those composed by the rough periwinkles Littorina arcana (Hannaford-Ellis, 1978),
L. compressa (Jeffreys, 1865), and L. saxatilis (Olivi, 1792), and those including the flat periwinkles L .
fabalis (W. Turton, 1825) and L. obtusata (Linnaeus, 1758).

Cytogenetic analyses, mostly limited to the description of chromosome numbers, have been
published for a total of 11 species of the family Littorinidae (Table 1) [5–15]. Five of these species belong
to the genus Echinolittorina [E. hawaiiensis (Rosewater & Kadolsky, 1981), E. miliaris (Quoy & Gaimard,
1833), E. punctata (Gmelin, 1791), E. radiata (Souleyet, 1852), and E. subnodosa (Molina, 1782)], four to
the genus Littorina [L. brevicula (Philippi, 1844), L. keenae (Rosewater, 1978), L. obtusata, and L. saxatilis],
and the remaining two are Littoraria strigata (Philippi, 1846) and Melarhaphe neritoides (Linnaeus,
1758). Karyotype compositions have been described for L. saxatilis [7,10,11], M. neritoides [6,9,11],
E. subnodosa [13], and L. keenae [15], and the existence of sex chromosome determination systems has
been proposed for both M. neritoides (X0) [9,11] and L saxatilis (XY) [12]. Furthermore, the presence of
closely associated repetitive DNA sequences on a single chromosome location has been described in
M. neritoides [14].

Table 1. Haploid (n) and diploid (2n) chromosome numbers and karyotypes in Littorinidae.

Species n 2n Karyotype Reference

Echinolittorina hawaiensis (Rosewater & Kadolsky, 1981) 15 30 [5]
Echinolittorina miliaris (Quoy & Gaimard, 1833) 18 [5]

Echinolittorina punctata (Gmelin, 1791) 16 [8]
17 34 [11]

Echinolittorina radiata (Souleyet, 1852) 18 [5]
Echinolittorina subnodosa (Molina, 1782) 8 16 8 m [13]

Littoraria strigata (Philippi, 1846) 17 [5]
Littorina brevicula (Philippi, 1844) 17 [5]

Littorina keena Rosewater, 1978 34 10 m/sm, 7 st/t [15]
Littorina obtusata (Linnaeus, 1758) 34 [7]

Littorina saxatilis (Olivi, 1792) 34 8 m/sm, 9 st/t [7]
34 10 m/sm, 7 st/t [10]
34 6 m, 9 sm, 2 st [11]

34 XX ♀/34 XY ♂ 10 m/sm, 7 st [12]
Melarhaphe neritoides (Linnaeus, 1758) 17 34 8 m, 2 sm, 7 t [6]

17 34 XX ♀/33 X0 ♂ 10 m, 3 sm, 3 st, 1 t [9]
34 XX ♀/33 X0 ♂ 10 m, 3 sm, 3 st, 1 t [11]

Notes: m: metacentric; sm: submetacentric; st: subtelocentric; t: telocentric.

In this work, we characterized the chromosomes of nine periwinkle species by
4′,6-diamidino-2-phenylindole (DAPI) staining and fluorescent in situ hybridization (FISH) mapping of
major (45S) rDNA, minor (5S) rDNAs, and H3 histone gene clusters. A fragment of the mitochondrial
cytochrome c oxidase subunit I (COI) gene was further amplified and sequenced to add independent
genetic information for species identification.

2. Materials and Methods

Periwinkles were collected at the localities indicated in Table 2. Attending to shell and internal
morphology criteria, the specimens were preliminarily identified as Littorina arcana (Hannaford-Ellis,
1978), Littorina saxatilis (Olivi, 1792), Littorina compressa (Jeffreys, 1865), Littorina fabalis (W. Turton, 1825),
Littorina obtusata (Linnaeus, 1758), Littorina littorea (Linnaeus, 1758), Littoraria angulifera (Lamarck, 1822),
Cenchritis muricatus (Linnaeus, 1758), and Melarhaphe neritoides (Linnaeus, 1758). The nomenclature
used for the taxa follows the World Register of Marine Species database [16]. Representatives of the
two sympatric ecotypes of L. saxatilis [4] and the three morphotypes/ecotypes described for the Iberian
Peninsula L. fabalis [17] were included.
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Table 2. Collection localities of the species of Littorinidae.

Species Locality Coordinates

Littorina arcana Holy Island, UK 53.299781, −4.679846
Littorina saxatilis Cabo Estai, Ría de Vigo, Spain 42.182181, −8.813204

Cabo Silleiro, Spain 42.104987, −8.898929
Littorina compressa Holy Island, UK 53.299781, −4.679846
Littorina obtusata Rande, Ría de Vigo, Spain 42.284311, −8.658661
Littorina fabalis Santo André, Portugal 41.412417, −8.787778

Praia da Borna, Ría de Vigo, Spain 42.280867, −8.697019
O Grove, Ría de Arousa, Spain 42.460500, −8.872028

Littorina littorea Marín, Ría de Pontevedra, Spain 42.396351, −8.695599
Littoraria angulifera Miami, FL, USA 25.810107, −80.164063
Cenchritis muricatus Miami, FL, USA 25.889330, −80.150129
Melarhaphe neritoides Cabo Udra, Ría de Aldán, Spain 42.333599, −8.827797

Periwinkles were transported to the laboratory and processed following a combination of
methods previously described for mollusks [18–20]. After an overnight colchicine (0.005%) treatment,
periwinkles were euthanized and their muscular feet were dissected and preserved in absolute ethanol.
The rest of the soft tissues were immersed in 50% (3 h) and 25% (3 h) sea water containing colchicine
(0.05%) prior to fixation with ethanol/acetic acid. Small pieces of fixed gills and gonads were immersed
in 60% acetic acid and disaggregated to obtain cell suspensions that were spread onto preheated
slides [21,22].

Genomic DNA, extracted with the EZNA Mollusc DNA Kit (Omega Bio-Tek, Norcross, GA, USA),
was used to amplify the H3 histone gene, 5S rDNA, and 28S rDNA in a GeneAmp PCR system 9700
(Applied Biosystems, Foster City, CA, USA). PCRs were performed in 20 µL total volume containing
1× PCR buffer, 2.5 mmol/L MgCl2, 50 ng DNA, 0.5 mmol/L each dNTP, 1 µmol/L each primer, and
1 U BIOTAQ DNA polymerase (Bioline, London, UK). H3 histone gene and 5S rDNA probes were
labeled by supplementing the PCR mixtures either with 20 µM biotin-16-dUTP (Roche Applied Science,
Penzberg, Germany) or 5 µM digoxigenin-11-dUTP (10× DIG Labeling Mix, Roche Applied Science),
whilst 28S rDNA probes were labeled employing a nick translation kit (Roche Applied Science) [23–26].

Chromosome preparations were stained with DAPI (0.14 µg/mL) for 8 min, air dried, mounted
with antifade (Vectashield, Vector Laboratories Inc., Burlingame, CA, USA), and photographed using
a Nikon Eclipse-800 microscope equipped with a DS-Qi1Mc CCD camera (Nikon, Tokyo, Japan)
controlled by the NIS-Elements software (Nikon). After visualization and photography, single and/or
double FISH experiments using H3 histone gene, 5S rDNA, and/or 28S rDNA probes were performed
following previously published methods [23–26]. In short, chromosome preparations were digested
with RNase and pepsin, fixed with formaldehyde and denaturated in 70% formamide at 69 ◦C
(2 min). After overnight hybridization in 50% formamide at 37 ◦C, chromosome preparations
were washed at 45 ◦C with 50% formamide and 1× SSC. Biotin-labeled probes were detected with
fluorescein avidin and biotinylated anti-avidin (Vector Laboratories) whereas digoxigenin-labeled
probes were detected with mouse antidigoxigenin, goat antimouse rhodamine, and rabbit antigoat
rhodamine (Sigma–Aldrich, St. Louis, MO, USA). Chromosome preparations were counterstained
with DAPI, mounted with antifade and the previously recorded metaphase plates photographed again.
Chromosome preparations subjected to double FISH experiments were then rehybridized using a third
probe, and the same metaphase plates were photographed once more.

Karyotype analyses were performed in a minimum of 10 specimens (5 females, 5 males) from
each periwinkle species. A minimum of 10 metaphase plates per specimen was analyzed. For each
periwinkle species, the best 10 metaphase plates showing FISH signals, obtained from different
individuals, were employed to build karyotypes. Measurements of short and long arm lengths were
taken, and relative lengths and centromeric indices from each chromosome pair were determined for
each metaphase plate. Mean values per chromosome pair and species were also calculated.
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The morphological identification of the specimens was confirmed by amplifying and sequencing
a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene [27,28]. All sequences
were deposited in the NCBI GenBank database under the accession numbers MH809396 to MH809424
(Supplementary materials Figure S1).

3. Results

All male and female specimens of the nine periwinkle species showed diploid chromosome
numbers of 2n = 34 and karyotypes characterized by a superabundance of meta/submetacentric
chromosome pairs (15 to 17).

As can be seen in Figures 1–3, FISH mapping of 28S rDNA probes showed hybridization signals
in the nine periwinkle taxa. Five of them displayed a single major (45S) rDNA cluster located at
subterminal positions on the short arms of submetacentric chromosome pair 8 in the flat periwinkles
L. obtusata and L. fabalis, subtelocentric pair 16 in the mangrove periwinkle L. angulifera and the beaded
periwinkle C. muricatus, and metacentric pair 11 in the small periwinkle M. neritoides. In contrast,
two clusters were detected at subterminal positions on chromosome pairs 11 and 15 in the rough
periwinkles L. arcana, L. saxatilis, and L. compressa, and on chromosome pairs 8 and 16 in the common
periwinkle L. littorea.
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Figure 1. Chromosomal mapping of major rDNA and histone gene clusters in rough periwinkles.
Fluorescent in situ hybridization mapping of H3 histone gene (H3, green) and major rDNA (28S,
magenta) probes to mitotic chromosomes of the rough periwinkles Littorina arcana, Littorina saxatilis,
and Littorina compressa counterstained with 4′-6-diamidino-2-phenylindole (DAPI). Scale bars, 5 µm.
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Figure 2. Chromosomal mapping of rDNA and histone gene clusters in flat and common periwinkles.
Fluorescent in situ hybridization mapping of minor rDNA (5S, red), H3 histone gene (H3, green)
and major rDNA (28S, magenta) probes to mitotic chromosomes of the flat periwinkles Littorina
obtusata and Littorina fabalis and the common periwinkle Littorina littorea counterstained with
4′-6-diamidino-2-phenylindole (DAPI). No minor (5S) rDNA signals were detected in the common
periwinkle. Scale bars, 5 µm.

In regard to H3 histone genes, a single cluster was detected in all periwinkles: close to the
centromere on the long arms of chromosome pair 7 in the rough periwinkles Littorina arcana, L. saxatilis,
and L. compressa and the flat periwinkles L. obtusata and L. fabalis; intercalary to the long arms of
chromosome pair 7 in the common periwinkle L. littorea and the small periwinkle M. neritoides; and at a
subterminal location on the long arms of chromosome pair 17 in the mangrove periwinkle L. angulifera
and the beaded periwinkle C. muricatus.

In contrast, 5S rDNA hybridization signals were only detected in the flat periwinkles L. obtusata
and L. fabalis and the small periwinkle M. neritoides. In all cases, the single 5S rDNA cluster was close
to the centromere on the long arms of chromosome pair 4.

Double-color FISH using 28S rDNA and H3 histone gene probes labeled differently, followed by
rehybridization with a 5S rDNA probe in L. obtusata, L. fabalis, and M. neritoides, demonstrated that
all clusters were located on different chromosome pairs in each of the nine periwinkles (Figures 1–3).
A summary of the FISH mapping results, including those previously published for the small periwinkle
M. neritoides [14], is presented in Table 3.
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Figure 3. Chromosomal mapping of rDNA and histone gene clusters in mangrove, beaded, and small
periwinkles. Fluorescent in situ hybridization mapping of H3 histone gene (H3, green) and major rDNA
(28S, magenta) probes to mitotic chromosomes of the mangrove periwinkle Littoraria angulifera, the
beaded periwinkle Cenchritis muricatus, and the small periwinkle Melarhaphe neritoides counterstained
with 4′-6-diamidino-2-phenylindole (DAPI). Minor rDNA (5S, red) signals were also detected in the
small periwinkle. Scale bars, 5 µm.

Table 3. Chromosomal location of rDNA and histone gene clusters in Littorinidae.

Species 2n 45S rDNA 5S rDNA H3 Histone Genes Reference

Littorina arcana 34 11p ter (st) 7q cen (sm) This work
15p ter (sm)

Littorina saxatilis 34 11p ter (sm) 7q cen (sm) This work
15p ter (sm)

Littorina compressa 34 11p ter (sm) 7q cen (sm) This work
15p ter (sm)

Littorina obtusata 34 8p ter (sm) 4q cen (m) 7q cen (m) This work
Littorina fabalis 34 8p ter (sm) 4q cen (sm) 7q cen (sm) This work
Littorina littorea 34 8p ter (m) 7q ic (sm) This work

16p ter (sm)
Littoraria angulifera 34 16p ter (st) 17q ter (m) This work
Cenchritis muricatus 34 16p ter (st) 17q ter (st) This work
Melarhaphe neritoides 34 11p ter (m) 4p cen (m) 7q ic (st) This work

34/33 p ter (m) * [14]

Notes: p: short arm; q: long arm; cen: subcentromeric; ic: intercalary; ter: subterminal; (m): metacentric; (sm):
submetacentric; (st): subtelocentric; (t): telocentric; *: unidentified chromosome pair.
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4. Discussion

Chromosome studies of gastropod mollusks are scarce [29]. This is mainly due to low mitotic
indices, small chromosome sizes, and technical difficulties in obtaining good chromosome morphology
and spreading. This is particularly evident in Littorinidae, where chromosome numbers were described
for only eleven (Table 1) of the around 200 species currently included in the family. The diploid
chromosome numbers of 2n = 34 presented by the nine species studied herein, six of them newly
described, are coincident with those proposed for seven of the species previously studied and seem to
confirm that this is the common number in periwinkles. In contrast, this number differs with those
proposed for Echinolittorina hawaiensis (2n = 30), E. miliaris (2n = 36), E. radiata (2n = 36), and E. subnodosa
(2n = 16) [5,13]. Although those differences could indicate variations in chromosome numbers among
different genera in the family, as the divergent diploid numbers (30 and 36) for three of these species
were determined from paraffinned material in a study performed in the early 1960s [5], it would be
necessary to confirm them using modern techniques of chromosome preparation. In regard to the
highly divergent diploid chromosome number of 2n = 16 proposed for E. subnodosa [13], it is important
to take into account that gastropod mollusks are usually intermediary hosts for digenean parasites,
many of which present chromosome numbers and karyotypes [30] similar to the one reported for
E. subnodosa [13]. Thus, future studies are needed to confirm the chromosome number in this species.

Regarding chromosome morphologies, the superabundance of metacentric and submetacentric
chromosome pairs (15 to 17) in the karyotypes of the nine periwinkles described in this work is partially
concordant with previous results. The minor discrepancies in karyotype composition can be attributed
to differences in the degree of condensation of the chromosomes and the methodology employed [15].

In contrast with previous reports describing differences in chromosome number for male (X0,
33 chromosomes) and female (XX, 34) M. neritoides [9,11] and in chromosome morphology for male
(XY) and female (XX) L. saxatilis [12], we did not detect any difference in chromosome number nor
karyotype composition between males and females in any of the nine periwinkle species studied
here. In this sense, targeted resequencing in L. saxatilis [31] did not reveal any regions with low
heterozygosity in males, as expected for an XY sex determination system [32], in agreement with our
results. The absence or presence of sex chromosome determinism in these species may have some
evolutionary implications. For example, according to Haldane’s rule, intrinsic genetic incompatibilities
should affect the heterogametic sex [33]. However, if there are undifferentiated sex chromosomes in
L. saxatilis, both males and females should be equally affected by incompatibilities. A small degree
of postzygotic isolation was observed in hybrid males after the analysis of sperm quality [34], but
other postzygotic effects (embryo abnormalities) were also detected in females with intermediate
ecotype characteristics [35]. The observation of postzygotic effects in both male and female hybrids is
compatible with the absence of differentiated sex chromosomes we found here.

Pertaining to the FISH mapping results, all major (45S) rDNA clusters detected in periwinkles were
subtelomeric, but their number differed between one in flat, mangrove, beaded, and small periwinkles
versus two in rough and common periwinkles. This variation in the number of 45S rDNA clusters
does not completely agree with their phylogenetic relationships (Supplementary materials Figure
S1) [1] as the closely related rough and flat periwinkles displayed a different number of major rDNA
clusters, whereas the first presents the same number as the more distantly related common periwinkles.
Nevertheless, the location of the two clusters differs between the rough and the common periwinkles.
The variation in the number of 45S rDNA clusters is a common observation in many taxonomic groups
and in some cases has been related to their subtelomeric location. The presence of repeat sequences
and breakpoints at subtelomeric regions [36,37], together with clustering of telomeres in meiosis, could
favor sequence exchanges between non-homologous chromosomes [38] and consequently explain the
variation in number.

Concerning minor (5S) rDNA clusters, hybridization signals were detected in only three of the
nine periwinkles studied: the flat periwinkles L. fabalis and L. obtusata and the small periwinkle M.
neritoides. In all cases, the single cluster was located close to the centromere in chromosome pair 4.
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Even though the absence of signals in the remaining six species could be attributable to technical
difficulties or a non-clustered nature of the 5S rDNA repeats, the presence of clustered repeats in a
number that is below the resolution power of FISH is a more probable explanation.

In contrast to the proposed adjacent location of 45S rDNA and 5S rDNA in the small periwinkle
M. neritoides [14], the single species of Littorinidae in which FISH was previously applied, our results
demonstrated that in both the flat periwinkles L. fabalis and L. obtusata and the small periwinkle
M. neritoides the signals for 45S rDNA and those for 5S rDNA appeared in different chromosome pairs.

As commonly reported for other invertebrate groups, we detected a single H3 histone gene cluster
in all nine periwinkles. In contrast, the chromosomal location of the cluster varied from species to
species: subcentromeric signals appeared in rough and flat periwinkles, intercalary ones in common
and small periwinkles, and subterminal ones in mangrove and beaded periwinkles. The presence
of these clusters at subterminal positions is quite unusual in invertebrate species and has only been
described in some grasshoppers [39] and bivalves [25,28,40–43].

Overall, the different probes show the same chromosomal location within flat periwinkles
(L. obtusata and L. fabalis, including three morphotypes/ecotypes in the latter species) and also
within the complex L. arcana, L. compressa, and L. saxatilis, in agreement with the monophily of these
two groups. However, the differences in the distribution patterns of rDNA and histone gene clusters
found in this work indicate that conservation in chromosome number in Littorinidae is not paired
by conservation in chromosome structure. This is not a strange phenomenon as demonstrated by
the abundance of chromosomal rearrangements (i.e., inversions, translocations) found in sequenced
eukaryotic genomes [44,45], including L. saxatilis [46].

Although FISH mapping tandemly repeated gene families is a useful tool for chromosome
identification in invertebrates, this technique has only been previously applied to map rDNA clusters
in a single species of Littorinidae, the small periwinkle M. neritoides [14]. In this work, we have
demonstrated the feasibility of applying those techniques to locate rDNA and histone gene clusters in
nine species of periwinkles, thus opening the possibility of mapping other probes in these organisms
and contributing to a better understanding of their chromosome evolution. Even more, the viability
of applying FISH to periwinkles also opens the possibility of employing the whole genome of one
of the members of a species complex as a probe to hybridize chromosomes of other members of the
complex (genomic in situ hybridization, GISH) to obtain insights into their differences and/or to detect
interspecific hybridization and introgression.

FISH mapping information has provided valuable information to complement sequencing
information for genome assembly in different species. The extension of this technique beyond rDNA
and histone gene clusters to increase the contiguity of genome assemblies (chromosome level) and to
detect chromosomal rearrangements is likely to shed light on the evolutionary relevance of structural
variation and adaptation or speciation in gastropods.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/11/517/s1,
Figure S1: Maximum likelihood tree based on partial mitochondrial COI gene sequences of nine periwinkles using
the TN93 + G + I nucleotide substitution model.
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